Cost Optimal and Nearly Zero-Energy Buildings (nZEB)

Jarek Kurnitski Editor

Cost Optimal and Nearly Zero-Energy Buildings (nZEB)

Definitions, Calculation Principles, and Case Studies

Springer

 

Preface

Nearly zero-energy (nZEB) buildings and cost-optimal energy performance have suddenly become a widely discussed topic across Europe. How to construct these buildings, how to design them, and above all what it means are relevant questions that many building professionals and decision makers from both the public and private sector need to ask and find answers to. The current situation is historic, as the EU has to be ready for the mass construction of nZEB buildings by 2019.
Behind the scenes of this system-wide change in construction, directives on
energy performance in buildings in combination with related R&D at all levels, from technology to calculation methods and regulation, have made it possible to design and construct buildings with remarkably improved energy performance.
nZEB buildings are expected to use 2–3 times less energy compared to today’s modern buildings, should also provide a high-quality indoor environment and long service life, and have to be easy to operate and maintain. Yet, there is still a long way to go in order to realize these ambitious goals in practice, and we hope this book represents a valuable step forward.
There are good reasons for European regulations on the energy performance of buildings: Buildings account for roughly 40 % of total primary energy use in the EU and globally, and also offer the greatest cost-effective energy saving potential compared to other sectors. Unlike the energy and transport sectors, in the building sector the technology for energy savings already exists, making rapid execution possible once the necessary skills and regulations are in place.

Uniform implementation would accelerate the process, as differences in regulations complicate building design, installation and construction, as well as manufacturing and sales in the common market area.
In this book, we have collected the latest information available on nZEB buildings;  the respective authors are well-versed in the preparation of European REHVA nZEB technical definitions, as well as national regulations and nZEB requirements. They present the latest information on technical definitions, system boundaries, and methodologies for energy performance calculations, as well as descriptions of technical solutions and design processes on the basis of nZEB building case studies—essential resources for all those who need to understand and/or work with the energy performance of buildings.
The authors believe that a healthy and ongoing exchange of information will help to promote more concrete and harmonized national nZEB regulations, and to find cost-effective design processes and technical solutions for future nZEB buildings.

Click here to download the e-book

 

 

 

MED-ENEC Energy Efficiency in the Construction Sector in the Mediterranean

According to the IEA statistics for energy balance, the residential and commercial sectors are responsible for almost 40 % of the final energy consumption in the world. The major part of this consumption is in buildings. The absolute figure is rising fast in MED-ENEC Partner Countries. The living standard of the population is improving, which translates, inter alia, into an increase in the equipment present in households, like the more widespread use of air-conditioning units. This combination, of a steady demographic growth and a rise in the average living standard, results in an increasing energy demand and CO2 emissions in the building sector.  This study provides an overview of the current status of Energy Efficiency Building Code (EEBC) in the MED-ENEC Partner Countries (ME-PCs). The study is divided in two parts: the first part provides a general introduction on the background and reasoning of the implementation of EE Building Code – the second part provides an overview of the current status of EE building Codes in MED-ENEC Partner Countries. The study was carried out for: Algeria, Egypt, Jordan, Lebanon, Morocco, Occupied Palestinian Territories, Tunisia and Syria.

click here to download the study

come progettare una casa passiva in Italia – arch. Bart Conterio

www.0-co2.it

Allo stato attuale della tecnica le costruzioni ad alta efficienza energetica sono rappresentate dalle “case passive” che, applicando, ad esempio, lo standard di origine tedesca “passivhaus”, sono edifici che hanno un fabbisogno energetico del riscaldamento non superiore a 15 kWh/mq/anno ( lo stesso dicasi per il raffrescamento estivo): per comprendere meglio l’alto standard di efficienza energetica richiesto, si può prendere come riferimento la situazione italiana, in cui, in media, un abitazione consuma per il riscaldamento 106 kW/mq/anno  e 160 kW/mq/anno per l’insieme dei consumi domestici.

Tuttavia i  criteri progettuali di un edificio ad alta efficienza energetica per lo più sviluppati, sperimentati e messi a punto nei paesi dell’Europa centrale e settentrionale (in cui la priorità è costituita dal contenimento delle dispersione del calore nella stagione invernale), devono essere adeguatamente ponderati, rivisitati ed adattati al clima temperato-mediterraneo, poiché, alle nostre latitudini,  è fondamentale risolvere il problema del surriscaldamento estivo e del conseguente contenimento energetico delle spese di condizionamento, così come annunciato dalla direttiva  2010/31/UE. Infatti in tale area climatica l’involucro edilizio di una costruzione ad alte prestazioni energetiche, dovrà non solo garantire la riduzione delle perdite di calore verso l’esterno e lo sfruttamento dei guadagni di energia solare in inverno, ma dovrà anche assicurare la protezione dagli apporti solari estivi e, soprattutto, il controllo e lo smaltimento adeguato degli apporti di calore gratuiti interni.

Più nel dettaglio,  le case passive costruite in Europa adottano prevalentemente  la tecnologia delle pareti multistrato leggere (pareti stratificate a secco con la tecnologia S/R, pareti in legno, etc)  con un pacchetto costituito, quasi totalmente, da isolanti termici ad elevato  spessore (anche 20-30 cm), a basso peso specifico e quindi a bassa massa di accumulo, al fine di ottenere valori di trasmittanza termica molto bassi (inferiori comunque a 0,15 W/mqK). E’ comunque da considerare che tali tecniche di super-isolamento, trovano indicazione soprattutto in zone a carattere continentale dove i consumi per il riscaldamento invernale prevalgono nettamente su quelli per il raffrescamento estivo. Inoltre, mentre nel periodo invernale il requisito principale è la protezione del trasferimento del calore dagli ambienti interni all’esterno, durante il periodo estivo, uno dei requisiti è quello dello smaltimento, di notte, del sovraccarico termico accumulato durante il giorno: purtroppo, questa tipologia di involucro “iperisolata”, essendo caratterizzata da una bassa massa termica e quindi da una limitata inerzia termica, non pemette di “scaricare” adeguatamente nelle ore notturne, il calore accumulato durante il giorno innescando, così, un  processo di surriscaldamento. In area climatica mediterranea tale fenomeno di sovraccarico termico risulta molto spesso irreversibile se non vi è,  nella costruzione,  un perfetto controllo delle fonti di irraggiamento solare (effetto serra) ed una adeguata gestione degli apporti gratuiti di calore all’interno dell’edificio. (persone, elettrodomestici ed apparecchiature elettriche, illuminazione artificiale, etc). Oltretutto, con questa tipologia di involucro non è possibile sfruttare i benefici dei sistemi passivi di riscaldamento, vista la limitatezza e, alcuni casi, la totale mancanza, di superfici dotate di massa di accumulo termico in grado, quindi, di accumulare il calore quando necessario, per poi  distribuirlo agli spazi interni quando l’effetto del guadagno solare cessa. Anche per quanto riguarda il raffrescamento passivo, la massa di accumulo termico appare necessaria in quanto potrebbe essere sfruttata come vero e proprio pozzo termico.    

A questi inconvenienti si è cercato di porvi rimedio mediante l’adozione elementi strutturali dotati di massa di accumulo termico (come ad esempio solai, pavimenti, corpi scala in cemento armato, etc)  e/o l’impiego nella stratificazione delle tamponature esterne, di  materiali dotati di una maggiore densità e/o calore specifico (ad esempio  pannelli in legno massiccio tipo X-LAM, lana di legno e fibra di legno ad alta densità, fibra di legno mineralizzata, fibre di cellulosa o canapa, etc): Ma il ricorso a tali soluzioni, anche se in alcuni casi consente di raggiungere degli ottimali valori di trasmittanza termica periodica  e dei valori di sfasamento ed attenuazione più che accettabilinon permette, comunque, di raggiungere degli adeguati valori di massa termica (=>330 kg/mq),  di capacità termica areica interna periodica e di ammettenza interna estiva:  infatti un involucro edilizio caratterizzato da una scarsa ammettenza interna e da una insufficiente capacità termica areica interna periodica, (che in parole povere rappresenta la capacità di un componente edilizio di accumulare i carichi termici provenienti dall’interno) può innescare, all’interno dell’edificio, dei fenomeni di surriscaldamento sia nella stagioni estive che nelle stagioni intermedie, (soprattutto  in ambienti con  alto indice di affollamento) e, quindi, delle condizioni di discomfort termico….. leggi l’articolo completo