studi scientifici internazionali relativi alle nanopatologie

  • A.M. Gatti, M. Ballestri, A. Bagni, Granulomatosis associated to porcelain wear debris,  American Journal of Dentistry  2002, 15(6): 369

  • Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979; 53: 290-6. [Crossref]
  • Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 1990; 102: 268-81. [Crossref] [PubMed]
  • Backus R. Lighting up time for TiO2. Industrial Minerals 2007; 473: 28-39.
  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 2009; 43: 4227-33.
  • Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients. Fourth ed. London: Pharmaceutical Press, London, United Kingdom, and the American Pharmaceutical Association; 2003.
  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 2008; 27: 1825-51. [PubMed] [Crossref]
  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41. [Crossref] [PubMed]
  • Kosmulski M. The pH-dependent surface charging and points of zero charge V. Update. J Colloid Interface Sci 2011; 353: 1-15.
  • Tang H, Prasad K, Sanjinbs R, Schmid P E, Levy F. Electrical and optical properties of Ti02 anatase thin films. J Appl Phys 2004; 75: 2042-7.
  • Augustynski J. The role of the surface intermediates in the photoelectro-chemical behaviour of anatase and rutile TiO2. Electrochimica Acta 1993; 38: 43-6.
  • Hewitt JP. Titanium dioxide: a different kind of sunshield. Drug Cosmet Ind 1992; 151: 26-32.
  • Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 2008; 63: 515-82. [Crossref]
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 68: 1794-807. [Crossref]
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 2008; 38: 371-6. [Crossref] [PubMed]
  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17: 593-623. [PubMed] [Crossref]
  • Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001; 24: 108-15.
  • Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113: 1555-60. [Crossref] [PubMed]
  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006; 40: 4353-9. [Crossref]
  • Kocbek P, Teskac K, Kreft ME, Kristl J. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 2010; 6: 1908-17. [Crossref]
  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. Acs Nano 2008; 2: 2121-34. [Crossref] [PubMed]
  • Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med 2001; 58: 211-6. [PubMed] [Crossref]
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622-7.
  • Dunford R, Salinaro A, Cai LZ, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. Febs Lett 1997; 418: 87-90.
  • Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005; 213: 66-73.
  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Persp 2007; 115: 1631-7.
  • Lu N, Zhu Z, Zhao X, Tao R, Yang X, Gao Z. Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin. Biochem Biophys Res Commun 2008; 370: 675-80.
  • Park EJ, Yi J, Chung YH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008; 180: 222-9.
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174-85. [Crossref] [PubMed]
  • Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 2008; 183: 72-80.
  • Uchino T, Tokunaga H, Ando M, Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol in Vitro 2002; 16: 629-35. [Crossref]
  • Dodd NJ, Jha AN. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutat Res 2009; 660: 79-82.
  • Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2011; 5: 341-53. [Crossref]
  • Petković J, Küzma T, Rade K, Novak S, Filipič M. Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. J Hazard Mater 2011; doi: 10.1016/j.jhazmat.2011.09.004. [Crossref]
  • Barthel A, Klotz LO. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 2005; 386: 207-16.
  • Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, et al. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health, Part A 2008; 71: 478-85. [Crossref]
  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Persp 2002; 110: 797-800. [Crossref]
  • Wang JJ, Sanderson BJS, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res-Gen Tox En 2007; 628: 99-106.
  • Xu A, Chai YF, Nohmi T, Hei TK. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 2009; 6: 3.
  • Zhu RR, Wang SL, Chao J, Shi DL, Zhang R, Sun XY, et al. Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mat Sci Eng C-Bio S 2009; 29: 691-6. [Crossref]
  • Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008; 49: 399-405. [Crossref]
  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 2007; 171: 99-110.
  • Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res-Gen Tox En 2007; 634: 205-19.
  • Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 1997; 18: 423-30. [Crossref] [PubMed]
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69: 8784-9. [Crossref] [PubMed]
  • Li N, Ma LL, Wang J, Zheng L, Liu J, Duan YM, et al. Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 2010; 51: 108-15. [Crossref]
  • Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR. Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicol in Vitro 2008; 22: 1689-96. [Crossref]
  • Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 2010; 267: 125-31.
  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 2010; 106: 114-7. [Crossref] [PubMed]
  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 2006; 36: 1469-79. [Crossref] [PubMed]
  • Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 2011; 81: 56-67. [Crossref]
  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 2006; 3: 11.
  • Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 2006; 3: 13.
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40: 4346-52. [Crossref]
  • Liu SC, Xu LJ, Zhang T, Ren GG, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 2010; 267: 172-7.
  • Liu XY, Ren XF, Deng XY, Huo YA, Xie J, Huang H, et al. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials 2010; 31: 3063-70. [PubMed] [Crossref]
  • Scuri M, Chen BT, Castranova V, Reynolds JS, Johnson VJ, Samsell L, et al. Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health, Part A 2010; 73: 1353-69. [Crossref]
  • Nohynek GJ, Schaefer H. Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001; 333: 285-99.
  • FDA. Sunscreen drug products for over-the-counter human use, Final Monograph, Federal Register 64 27666, US Rockville, MD; 2000.
  • Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 2009; 61: 685-92. [PubMed] [Crossref]
  • Breggin L, Falkner R, Jaspers N, Pendergrass J, Porter R. Securing the promise of nanotechnologies towards transatlantic regulatory cooperation. London: Affairs RIoI; 2009.
  • Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 2007; 360: 794-802.
  • Salvador A, Chisvert A. Sunscreen analysis – A critical survey on UV filters determination. Anal Chim Acta 2005; 537: 1-14.
  • Nohynek GJ, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2010; 243: 239-59. [PubMed] [Crossref]
  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007; 373: 251-77.
  • Salinaro A, Emeline AV, Zhao J., Hidaka. H., Ryabchuk V, Serpone KN. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields (Technical Report). Pure Appl Chem 1999; 71: 321-6. [Crossref]
  • Serpone N, Salinaro A, Hidaka H, Horikoshi S, Knowland J, Dunford R. Solar engineering. In: Morehouse JM, Hogan RE (eds). New York: ASME; 1998.
  • Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf Interface Anal 2006; 38: 473-7. [Crossref]
  • Labiele J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, et al. Agging of TiO2 nanocomposites used in sunscreens. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 2010; 158: 1-8.
  • Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photoch Photobio A 1997; 108: 1-35. [Crossref]
  • Wakefield G, Lipscomb S, Holland E, Knowland J. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem Photobiol Sci 2004; 37: 648-52. [Crossref]
  • Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 2009; 54: 511-20. [Crossref]
  • Kiss B, Biro T, Czifra G, Toth BI, Kertesz Z, Szikszai Z, et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 2008; 17: 659-67. [PubMed] [Crossref]
  • Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 2008; 219: 1871-7.
  • Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, et al. Titanium Dioxide Nanoparticles Aggravate Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Exp Biol Med 2009; 234: 314-22.
  • Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnology 2004; 21: 12. [Crossref]
  • Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmetic Sci 2010; 33: 234-44.
  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999; 12: 247-56. [Crossref]
  • Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001; 14: 92-7. [PubMed]
  • Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002; 54: S157-63. [Crossref]
  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, et al. Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 2010; 9: 495-509. [Crossref] [PubMed]
  • Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 2010; 35: 107-13. [Crossref]
  • Tan MH, Commens CA, Burnett L, Snitch PJ. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 1996; 37: 185-7. [Crossref] [PubMed]
  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Letters 2009; 191: 1-8.
  • Sadrieh N, Wokovich AM, Gopee NV, Zheng JW, Haines D, Parmiter D, et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO(2) Particles. Toxicol Sci 2010; 115: 156-66.
  • Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317: 1098.
  • FDA [Internet]. Food and drugs chapter I, Listing of color additives exempt from certification. Federal Register 21CFR73, US Rockville, MD; 2010; [cited 2011 October 14]. Available from:
  • Kumagai K. Uber den Resorptionvergang der corpuscularen Bestandteile im Darm. 192: 429-31.
  • Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 1994; 105: 157-68. [Crossref]
  • Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007; 168: 176-85.
  • Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010; 31: 894-9. [PubMed][Crossref]
  • Powell JJ, Harvey RSJ, Ashwood P, Wolstencroft R, Gershwin ME, Thompson RPH. Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. J Autoimmun 2000; 14: 99-105. [PubMed] [Crossref]
  • National Cancer Institute. Bioassay of titanium dioxide for possible carcinogenicity. Washington, DC: U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health; 1979.
  • Bernard BK, Osheroff MR, Hofmann A, Mennear JH. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Env Health 1990; 29: 417-29.
  • Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005; 26: 11-21. [PubMed] [Crossref]
  • Hext PM, Tomenson JA, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005; 49: 461-72. [PubMed] [Crossref]
  • Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, et al. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 2003; 45: 400-9. [PubMed] [Crossref]
  • Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 157: 697-706. [Crossref]
  • NIOSH. Occupational Exposure to Titanium Dioxid. Department Of Health And Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health 2011.
  • Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810-5. [Crossref][PubMed]
  • Peters A, Doring A, Wichmann HE, Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 1997; 349: 1582-7.
  • McGuinnes C, Duffin R, Brown S, Mills NL, Megson IL, MacNee W, et al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 2011; 119: 359-68.
  • Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ Health Perspect 2001; 109: 523-27. [PubMed]
  • Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 1992; 65: 535-42. [Crossref]
  • Oberdörster G, Ferin J, Lehnert BE. Correlation between particle-size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994 102: 173-9.
  • Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 2001; 172: 119-27.
  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 2009; 186: 152-9. [Crossref] [PubMed]
  • Kapp N, Studer D, Gehr P, Geiser M. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Methods Mol Biol 2007; 369: 431-47.
  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164: 1665-8.
  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 2008; 5:1.
  • Kim HW, Ahn EK, Jee BK, Yoon HK, Lee KH, Lim Y. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J Nanopart Res 2009; 111: 55-65. [Crossref]
  • Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001; 74: 1-8. [PubMed]
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91: 227-36. [Crossref]
  • Rehn B, Seiler F, Rehn S, Bruch J, Maier M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol 2003; 189: 84-95.
  • Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007; 115: 397-402. [PubMed]
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007; 230: 90-104.
  • Roursgaard M, Jensen KA, Poulsen SS, Jensen NEV, Poulsen LK, Hammer M, et al. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Scientific World Journal 2011; 11: 801-25. [Crossref]
  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, et al. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006; 20: 2393-5. [PubMed] [Crossref]
  • Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009; 260: 37-46.
  • Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary Response of Rats Exposed to Titanium-Dioxide (TiO2) by Inhalation for 2 Years. Toxicol Appl Pharmacol 1985; 79: 179-92. [Crossref]
  • Borm PJA, Hohr D, Steinfartz Y, Zeittrager I, Albrecht C. Chronic inflammation and tumor formation in rats after intratracheal instillation of high doses of coal dusts, titanium dioxides, and quartz. Inhal Toxicol 2000; 12: 225-31.
  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal Toxicol 1995; 74: 533-56. [Crossref]
  • Muhle H, Bellmann B, Creutzenberg O, Koch W, Dasenbrock C, Ernst H, et al. Pulmonary response to toner, TiO2 and crystalline silica upon chronic inhalation exposure in Syrian golden hamsters. Inhal Toxicol 1998; 10: 699-729.
  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, et al. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 2002; 70: 86-97. [PubMed] [Crossref]
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004; 77: 347-57. [PubMed] [Crossref]
  • Hsieh TH, Yu CP. Two-phase pulmonary clearance of insoluble particles in mammalian species. Inhal Toxicol 1998; 102: 121-30.
  • Wang JX, Liu Y, Jiao F, Lao F, Li W, Gu YQ, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008; 254: 82-90.
  • Yamadori I, Ohsumi S, Taguchi K. Titanium dioxide deposition and adenocarcinoma of the lung. Acta Pathol Jpn 1986; 36: 783-90. [PubMed]
  • Chen JL, Fayerweather WE. Epidemiologic-study of workers exposed to titanium-dioxide. J Occup Environ Med 1988; 30: 937-42. [Crossref]
  • Ramanakumar AV, Parent ME, Latreille B, Siemiatycki J. Risk of lung cancer following exposure to carbon black, titanium dioxide and talc: results from two case-control studies in Montreal. Int J Cancer 2008; 122: 183-9. [PubMed] [Crossref]
  • Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 15: 697-706. [Crossref] [PubMed]
  • IARC. Carbon black, titanium dioxide, and talc. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 93. International Agency for Research on Cancer: Lyon, France, 2006.
  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 2006; 74: 295-6. [Crossref]
  • Cadosch D, Chan E, Gautschi OP, Filgueira L. Metal is not inert: Role of metal ions released by biocorrosion in aseptic loosening-Current concepts. J Biomed Mater Res A 2009; 91: 1252-62. [PubMed] [Crossref]
  • Sargeant A, Goswami T. Hip implants – Paper VI – Ion concentrations. Mater Design 2007; 28: 155-71. [Crossref]
  • Valentine-Thon E, Schiwara HW. Validity of MELISA (R) for metal sensitivity testing. Neuroendocrinol Lett 2003; 241: 57-64.
  • Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 2001; 83: 428-36. [PubMed]
  • Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 2009; 30: 4590-600. [Crossref]
  • Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82: 457-76. [PubMed]
  • Margevicius KJ, Bauer TW, McMahon JT, Brown SA, Merritt K. Isolation and characterization of debris in membranes around total joint prostheses. J Bone Joint Surg Am 1994; 76: 1664-75. [PubMed]
  • Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, et al. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am 1988; 70: 347-56. [PubMed]
  • Giavaresi G, Ambrosio L, Battiston GA, Casellato U, Gerbasi R, Finia M, et al. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metalorganic chemical vapour deposition: an in vivo study. Biomaterials 2004; 25: 5583-91. [Crossref]
  • Cui C, Liu H, Li Y, Sun J, Wang R, Liu S, et al. Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 2005; 59: 3144-48. [Crossref]
  • Drnovsek N, Daneu N, Recnik A, Mazaj M, Kovac J, Novak S. Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants. Surf Coat Tech 2009; 203: 1462-68.
  • Tedetti M, Sempere R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 2006; 82: 389-97. [PubMed] [Crossref]
  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 2009; 407: 1461-68.
  • Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 2006; 134: 225-32.
  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010; 269: 190-7.
  • Kim S-C, Lee D-K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 2005; 80: 227-32. [Crossref]
  • Hong J, Ma H, Otaki M. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 2005; 99: 592-7. [PubMed] [Crossref]
  • Velzeboer I, Hendriks AJ, Ragas AMJ, Van de Meent D. Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 2008; 27: 1942-47. [Crossref] [PubMed]
  • Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 2006; 40: 3527-32. [Crossref] [PubMed]
  • Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010; 78: 209-15. [Crossref]
  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009; 76: 1356-65. [Crossref]
  • Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ; 408: 2268-72.
  • Lee S-W, Kim S-M, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Phar 2009; 281: 86-91.
  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 2008; 433: 278-84.
  • Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 2007; 844: 415-30.
  • Scown TM, van Aerle R, Johnston BD, Cumberland S, Lead JR, Owen R, et al. High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout but with no Observable Impairment of Renal Function. Toxicol Sci 2009; 109: 372-80. [PubMed] [Crossref]
  • Linhua H, Zhenyu W, Baoshan X. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histpathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 2009; 21: 1459-66.
  • Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 2010; 158: 1748-55.
  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y. Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010; 79: 928-33. [Crossref]
  • Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 2007; 67: 160-66. [Crossref] [PubMed]
  • Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 2007; 178: 245-54.
  • Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 2010; 96: 151-8. [Crossref]
  • Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008; 175: 410-20.
  • Reeves JF, Davies SJ, Dodd NJF, Jha AN. Hydroxyl radicals (OH) are associatedwithtitaniumdioxide (TiO2) nanoparticle-inducedcytotoxicityandoxidative DNA damage in fish cells. Mutat Res-Fund Mol M 2008; 640: 113-22.
  • Drobne D, Jemec A, Pipan Tkalec Z. In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 2009; 157: 1157-64.
  • Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008; 421: 4447-53.
  • Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R. Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Hazard Mater 2009; 171: 160-5.
  • Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 2009; 157: 1171-7.
  • Roh J-Y, Park Y-K, Park K, Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Phar 2010; 29: 167-72. [Crossref]
  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 2010; 42: 586-91. [Crossref]
  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, et al. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 2006; 110: 179-90. [Crossref]
  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, et al. Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 2006; 111: 239-53. [Crossref]
  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals 2008; 212: 211-17. [Crossref]
  • Su MY, Liu C, Qu CX, Zheng L, Chen L, Huang H, et al. Nano-anatase relieves the inhibition of electron transport caused by linolenic acid in chloroplasts of spinach. Biol Trace Elem Res 2008; 122: 73-81. [PubMed]
  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, et al. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. Biol Trace Elem Res 2008; 121: 69-79.
  • Lu CM, Zhang CY, Wen JQ, Wu GR. (in Chinese). Soybean Sci 2002; 21: 168-71.
  • Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985; 29: 211-4. [Crossref]
  • Ibáńez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram (-) bacteria. J Photochem Photobiol, A 2003; 157: 81-5.
  • Jang HD, Kim S-K, Kim S-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 2001; 3: 141-7. [Crossref]
  • Shang C, Cheung LM, Ho C-M, Zeng M. Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection. App Catal B 2009; 89: 536-42. [Crossref]
  • Khan U, Benabderrazik N, Bourdelais AJ, Baden DG, Rein K, Gardinali PR, et al. UV and solar TiO2 photocatalysis of brevetoxins (PbTxs). Toxicon 2010; 55: 1008-16. [Crossref] [PubMed]
  • Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011; 45: 1-16. [PubMed] [Crossref]
  • Lagopati N, Kitsiou PV, Kontos AI, Venieratos P, Kotsopoulou E, Kontos AG, et al. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol, A 2010; 214: 215-23. [Crossref]
  • Stefanou E, Eyangelou A, Falaras P. Effects of UV-irradiated titania nanoparticles on cell proliferation, cancer metastasis and promotion. Catal Today 2010; 151: 58-63.
  • Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 1992; 52: 2346-8.
  • Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications. Tokyo: BKC, Inc; 1999.
  • Fujishima A, Call RX, Otsuki J, Hashimoto K, Iron K, Yamashita T, et al. Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO2 powder. Electrochim Acta 1993; 38: 153-7. [Crossref]
  • Kalbacova M, Macak MJ, Schmidt-Stein F, Mierke CT, Schmuki P. Phys. Status Solidi (RRL). 2008; 2: 194-8.
  • Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R et al. Photokilling of T-24 Human Bladder-Cancer Cells with Titanium-Dioxide. Br J Cancer 1994; 70: 1107-11. [Crossref]
  • Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008; 43: 226-36.
  • Song M, Zhang RY, Dai YY, Gao F, Chi HM, Lv G, et al. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradition. Biomaterials 2006; 27: 4230-38. [Crossref] [PubMed]
  • Schmidt-Stein F, Hahn R, Gnichwitz JF, Song YY, Shrestha NK, Hirsch A, et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. Electrochem Commun 2009; 1111: 2077-80.
  • Matsui K, Segawa M, Tanaka T, Kondo A, Ogino C. Antibody-immobilized TiO2 nanoparticles for cancer therapy. J Biosci Bioeng 2009; 108: S36-S37. [Crossref]
  • Xu J, Sun Y, Huang JJ, Chen CM, Liu GY, Jiang Y et al. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochem 2007; 712: 217-22.
  • Lai T-Y, Lee W-C. Killing of cancer cell line by photoexcitation of folic acidmodified titanium dioxide nanoparticles. J Photochem Photobiol, A 2009; 204: 148-53.
  • Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Brit J Nutr 2004; 92: 947-55. [Crossref]
  • Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–70. doi:10.1021/jp0516846.View ArticleGoogle Scholar
  • Wessels JM, Nothofer HG, Ford WE, von Wrochem F, Scholz F, Vossmeyer T, et al. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J Am Chem Soc. 2004;126(10):3349–56. doi:10.1021/ja0377605.View ArticleGoogle Scholar
  • Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, et al. Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol. 2010;44(7):2689–94. doi:10.1021/es903757q.View ArticleGoogle Scholar
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46(4):2242–50. doi:10.1021/es204168d.View ArticleGoogle Scholar
  • Kerman K, Saito M, Yamamura S, Takamura Y, Tamiya E. Nanomaterial-based electrochemical biosensors for medical applications. Trac-Trends in Analytical Chemistry. 2008;27(7):585–92. doi:10.1016/j.trac.2008.05.004.View ArticleGoogle Scholar
  • Logan N, Sherif A, Cross AJ, Collins SN, Traynor A, Bozec L, et al. TiO2-coated CoCrMo: improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J Biomed Mater Res Part A. 2015;103(3):1208–17. doi:10.1002/jbm.a.35264.View ArticleGoogle Scholar
  • Wu Q, Li J, Zhang W, Qian H, She W, Pan H, et al. Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating. J Mat Chem B. 2014;2(39):6738–48. doi:10.1039/c4tb00923a.View ArticleGoogle Scholar
  • Catauro M, Bollino F, Papale F, Marciano S, Pacifico S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater Sci Eng C. 2015;47:135–41. doi:10.1016/j.msec.2014.11.040.View ArticleGoogle Scholar
  • Montazer M, Pakdel E. Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem Photobiol C-Photochem Rev. 2011;12(4):293–303. doi:10.1016/j.jphotochemrev.2011.08.005.View ArticleGoogle Scholar
  • Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol. 2009;61(4):685–92. doi:10.1016/j.jaad.2009.02.051.View ArticleGoogle Scholar
  • Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev. 2014;114(19):9987–10043. doi:10.1021/cr500008u.View ArticleGoogle Scholar
  • Martirosyan A, Schneider Y-J. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health. 2014;11(6):5720–50. doi:10.3390/ijerph110605720.View ArticleGoogle Scholar
  • Gustafsson A, Jonasson S, Sandstrom T, Lorentzen JC, Bucht A. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles. Toxicology. 2014;326:74–85. doi:10.1016/j.tox.2014.10.004.View ArticleGoogle Scholar
  • Shinohara N, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Ichinose T, et al. Dose-dependent clearance kinetics of intratracheally administered titanium dioxide nanoparticles in rat lung. Toxicology. 2014;325:1–11. doi:10.1016/j.tox.2014.08.003.View ArticleGoogle Scholar
  • Wang J, Li Y, Li W, Chen C, Li B, Zhao Y. Biological effect of intranasally instilled titanium dioxide nanoparticles on female mice. Nano. 2008;3(4):279–85.View ArticleGoogle Scholar
  • Auttachoat W, McLoughlin CE, White Jr KL, Smith MJ. Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nanoparticles. J Immunotoxicol. 2014;11(3):273–82. doi:10.3109/1547691x.2013.844750.View ArticleGoogle Scholar
  • Hong F, Hong J, Wang L, Zhou Y, Liu D, Xu B, et al. Chronic exposure to nanoparticulate TiO2 causes renal fibrosis involving activation of the Wnt pathway in mouse kidney. J Agric Food Chem. 2015;63(5):1639–47. doi:10.1021/jf5034834.View ArticleGoogle Scholar
  • Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol. 2009;29(4):330–7. doi:10.1002/jat.1414.View ArticleGoogle Scholar
  • Huang K-T, Wu C-T, Huang K-H, Lin W-C, Chen C-M, Guan S-S, et al. Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-beta pathway. Chem Res Toxicol. 2015;28(3):354–64. doi:10.1021/tx500287f.View ArticleGoogle Scholar
  • Medina-Reyes EI, Bucio-Lopez L, Freyre-Fonseca V, Sanchez-Perez Y, Garcia-Cuellar CM, Morales-Barcenas R, et al. Cell cycle synchronization reveals greater G2/M-phase accumulation of lung epithelial cells exposed to titanium dioxide nanoparticles. Environ Sci Pollut Res. 2015;22(5):3976–82. doi:10.1007/s11356-014-3871-y.View ArticleGoogle Scholar
  • Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, et al. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. J Hazard Mater. 2014;278:180–8. doi:10.1016/j.jhazmat.2014.06.005.View ArticleGoogle Scholar
  • Filippi C, Pryde A, Cowan P, Lee T, Hayes P, Donaldson K, et al. Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: impact on metabolism and bioenergetics. Nanotoxicology. 2015;9(1):126–34. doi:10.3109/17435390.2014.895437.View ArticleGoogle Scholar
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target. 2004;12(9–10):635–41. doi:10.1080/10611860400015936.View ArticleGoogle Scholar
  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett. 2008;183(1–3):72–80. doi:10.1016/j.toxlet.2008.10.001.View ArticleGoogle Scholar
  • Tsyganova NA, Khairullin RM, Terentyuk GS, Khlebtsov BN, Bogatyrev VA, Dykman LA, et al. Penetration of pegylated gold nanoparticles through rat placental barrier. Bull Exp Biol Med. 2014;157(3):383–5. doi:10.1007/s10517-014-2572-3.View ArticleGoogle Scholar
  • Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin. 2008;40(9):777–82. doi:10.1111/j.1745-7270.2008.00458.x.View ArticleGoogle Scholar
  • Wu W-h, Sun X, Yu Y-p, Hu J, Zhao L, Liu Q, et al. TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Commun. 2008;373(2):315–8. doi:10.1016/j.bbrc.2008.06.035.View ArticleGoogle Scholar
  • Li X, Xu S, Zhang Z, Schluesener HJ. Apoptosis induced by titanium dioxide nanoparticles in cultured murine microglia N9 cells. Chin Sci Bull. 2009;54(20):3830–6. doi:10.1007/s11434-009-0548-x.View ArticleGoogle Scholar
  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115(11):1631–7. doi:10.1289/ehp.10216.View ArticleGoogle Scholar
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891–959. doi:10.1021/cr0500535.View ArticleGoogle Scholar
  • Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P. Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev. 2014;114(19):10095–130. doi:10.1021/cr400606n.View ArticleGoogle Scholar
  • Bai J, Zhou B. Titanium dioxide nanomaterials for sensor applications. Chem Rev. 2014;114(19):10131–76. doi:10.1021/cr400625j.View ArticleGoogle Scholar
  • Kapilashrami M, Zhang Y, Liu Y-S, Hagfeldt A, Guo J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev. 2014;114(19):9662–707. doi:10.1021/cr5000893.View ArticleGoogle Scholar
  • Sang L, Zhao Y, Burda C. TiO2 nanoparticles as functional building blocks. Chem Rev. 2014;114(19):9283–318. doi:10.1021/cr400629p.View ArticleGoogle Scholar
  • Shrivas K, Hayasaka T, Sugiura Y, Setou M. Method for simultaneous imaging of endogenous Low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry. Anal Chem. 2011;83(19):7283–9. doi:10.1021/ac201602s.View ArticleGoogle Scholar
  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview—structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd.2003.12.016.View ArticleGoogle Scholar
  • Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–65. doi:10.1517/17425240902939143.View ArticleGoogle Scholar
  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu AM, et al. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release. 2005;108(2–3):193–214. doi:10.1016/j.jconrel.2005.07.024.View ArticleGoogle Scholar
  • Dominguez A, Suarez-Merino B, Goni-de-Cerio F. Nanoparticles and blood–brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol. 2014;14(1):766–79. doi:10.1166/jnn.2014.9119.View ArticleGoogle Scholar
  • Li Y, Li J, Yin J, Li W, Kang C, Huang Q, et al. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol. 2010;10(12):8544–9. doi:10.1166/jnn.2010.2690.View ArticleGoogle Scholar
  • Liu Y, Xu Z, Li X. Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. Brain Inj. 2013;27(7–8):934–9. doi:10.3109/02699052.2013.793401.View ArticleGoogle Scholar
  • Brun E, Carriere M, Mabondzo A. In vitro evidence of dysregulation of blood–brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials. 2012;33(3):886–96. doi:10.1016/j.biomaterials.2011.10.025.View ArticleGoogle Scholar
  • Baello S, Iqbal M, Bloise E, Javam M, Gibb W, Matthews SG. TGF-beta 1 regulation of multidrug resistance P-glycoprotein in the developing male blood–brain barrier. Endocrinology. 2014;155(2):475–84. doi:10.1210/en.2013-1472.View ArticleGoogle Scholar
  • Hosking MP, Liu L, Ransohoff RM, Lane TE. A protective role for ELR plus chemokines during acute viral encephalomyelitis. PLoS Pathog. 2009. doi:10.1371/journal.ppat.1000648.Google Scholar
  • Louboutin J-P, Strayer DS. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord-Drug Targets. 2013;12(6):815–29.View ArticleGoogle Scholar
  • Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158(3):983–94. doi:10.1016/j.neuroscience.2008.06.025.View ArticleGoogle Scholar
  • D’Aversa TG, Eugenin EA, Lopez L, Berman JW. Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood–brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol. 2013;39(3):270–83. doi:10.1111/j.1365-2990.2012.01279.x.View ArticleGoogle Scholar
  • Fang W, Lv P, Geng X, Shang E, Yang Q, Sha L, et al. Penetration of verapamil across blood brain barrier following cerebral ischemia depending on both paracellular pathway and P-glycoprotein transportation. Neurochem Int. 2013;62(1):23–30. doi:10.1016/j.neuint.2012.10.012.View ArticleGoogle Scholar
  • Mestre L, Inigo PM, Mecha M, Correa FG, Hernangomez-Herrero M, Loria F, et al. Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors. J Neuroinflamm. 2011. doi:10.1186/1742-2094-8-102.Google Scholar
  • De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ. Role of axonal transport in neurodegenerative diseases. Annual Review of Neuroscience. 2008;31:151–73.View ArticleGoogle Scholar
  • Perlson E, Maday S, Fu M-m, Moughamian AJ, Holzbaur ELF. Retrograde axonal transport: pathways to cell death? Trends Neurosci. 2010;33(7):335–44. doi:10.1016/j.tins.2010.03.006.View ArticleGoogle Scholar
  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology. 2008;254(1–2):82–90. doi:10.1016/j.tox.2008.09.014.View ArticleGoogle Scholar
  • Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9(3):182–94. doi:10.1038/nrn2335.View ArticleGoogle Scholar
  • Howland JG, Wang YT. Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008;169:145–58. doi:10.1016/s0079-6123(07)00008-8.View ArticleGoogle Scholar
  • Ashbrook DG, Williams RW, Lu L, Stein JL, Hibar DP, Nichols TE, et al. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease. Bmc Genomics. 2014. doi:10.1186/1471-2164-15-850.Google Scholar
  • Ceccariglia S, D’Altocolle A, Del Fa A, Silvestrini A, Barba M, Pizzolante F, et al. Increased expression of aquaporin 4 in the Rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience. 2014;274:273–88. doi:10.1016/j.neuroscience.2014.05.047.View ArticleGoogle Scholar
  • Lin T-W, Shih Y-H, Chen S-J, Lien C-H, Chang C-Y, Huang T-Y, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015;118:189–97. doi:10.1016/j.nlm.2014.12.005.View ArticleGoogle Scholar
  • Zhang L, Bai R, Li B, Ge C, Du J, Liu Y, et al. Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett. 2011;207(1):73–81. doi:10.1016/j.toxlet.2011.08.001.View ArticleGoogle Scholar
  • Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res Part A. 2014;102(2):470–8. doi:10.1002/jbm.a.34705.View ArticleGoogle Scholar
  • Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small. 2010;6(5):670–8. doi:10.1002/smll.200902049.View ArticleGoogle Scholar
  • Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaeffler M, Tian F, et al. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Particle and Fibre Toxicology. 2014. doi:10.1186/s12989-014-0033-9.Google Scholar
  • Di Bona KR, Xu Y, Ramirez PA, DeLaine J, Parker C, Bao Y, et al. Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reprod Toxicol. 2014;50:36–42. doi:10.1016/j.reprotox.2014.09.010.View ArticleGoogle Scholar
  • Ekblad M, Gissler M, Lehtonen L, Korkeila J. Prenatal smoking exposure and the risk of psychiatric morbidity into young adulthood. Arch Gen Psychiatry. 2010;67(8):841–9. doi:10.1001/archgenpsychiatry.2010.92.View ArticleGoogle Scholar
  • O’Connor MJ, Paley B. Psychiatric conditions associated with prenatal alcohol exposure. Dev Disabil Res Rev. 2009;15(3):225–34. doi:10.1002/ddrr.74.View ArticleGoogle Scholar
  • Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H, Zabihi H, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ Toxicol Pharmacol. 2014;37(2):617–25. doi:10.1016/j.etap.2014.01.014.View ArticleGoogle Scholar
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8. doi:10.1038/nnano.2011.41.View ArticleGoogle Scholar
  • Takahashi Y, Mizuo K, Shinkai Y, Oshio S, Takeda K. Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cotex and neostriatum of mice. J Toxicol Sci. 2010;35(5):749–56.View ArticleGoogle Scholar
  • Umezawa M, Tainaka H, Kawashima N, Shimizu M, Takeda K. Effect of fetal exposure to titanium dioxide nanoparticle on brain development—brain region information. J Toxicol Sci. 2012;37(6):1247–52.View ArticleGoogle Scholar
  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and Fibre Toxicology. 2009. doi:10.1186/1743-8977-6-20.Google Scholar
  • Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Loeschner K, Larsen EH, et al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Particle and Fibre Toxicology. 2010. doi:10.1186/1743-8977-7-16.Google Scholar
  • Cui Y, Chen X, Zhou Z, Lei Y, Ma M, Cao R, et al. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere. 2014;96:99–104. doi:10.1016/j.chemosphere.2013.07.051.View ArticleGoogle Scholar
  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151–7. doi:10.1007/s00204-007-0253-y.View ArticleGoogle Scholar
  • Patri A, Umbreit T, Zheng J, Nagashima K, Goering P, Francke-Carroll S, et al. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J Appl Toxicol. 2009;29(8):662–72. doi:10.1002/jat.1454.View ArticleGoogle Scholar
  • Sugibayashi K, Todo H, Kimura E. Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. J Toxicol Sci. 2008;33(3):293–8. doi:10.2131/jts.33.293.View ArticleGoogle Scholar
  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett. 2009;191(1):1–8. doi:10.1016/j.toxlet.2009.05.020.View ArticleGoogle Scholar
  • Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology. 2014. doi:10.1186/1743-8977-11-30.Google Scholar
  • Cho W-S, Kang B-C, Lee JK, Jeong J, Che J-H, Seok SH. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and Fibre Toxicology. 2013. doi:10.1186/1743-8977-10-9.Google Scholar
  • Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, et al. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials. 2010;31(1):99–105. doi:10.1016/j.biomaterials.2009.09.028.View ArticleGoogle Scholar
  • Ze Y, Zheng L, Zhao X, Gui S, Sang X, Su J, et al. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere. 2013;92(9):1183–9. doi:10.1016/j.chemosphere.2013.01.094.View ArticleGoogle Scholar
  • Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One. 2014. doi:10.1371/journal.pone.0092230.Google Scholar
  • Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM. Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience. 2010;165(2):445–54. doi:10.1016/j.neuroscience.2009.10.057.View ArticleGoogle Scholar
  • Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater. 2011;191(1–3):32–40. doi:10.1016/j.jhazmat.2011.04.027.View ArticleGoogle Scholar
  • Meena R, Kumar S, Paulraj R. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain. Journal of Nanoparticle Research. 2015. doi:10.1007/s11051-015-2868-x.Google Scholar
  • Ze Y, Sheng L, Zhao X, Ze X, Wang X, Zhou Q, et al. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J Hazard Mater. 2014;264:219–29. doi:10.1016/j.jhazmat.2013.10.072.View ArticleGoogle Scholar
  • Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, et al. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials. 2010;31(31):8043–50. doi:10.1016/j.biomaterials.2010.07.011.View ArticleGoogle Scholar
  • Ben Younes NR, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res. 2015;22(11):8728–37. doi:10.1007/s11356-014-4002-5.View ArticleGoogle Scholar
  • Xue Y, Wu J, Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett. 2012;214(2):91–8. doi:10.1016/j.toxlet.2012.08.009.View ArticleGoogle Scholar
  • Liu S, Xu L, Zhang T, Ren G, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology. 2010;267(1–3):172–7. doi:10.1016/j.tox.2009.11.012.View ArticleGoogle Scholar
  • Wu J, Sun J, Xue Y. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett. 2010;199(3):269–76. doi:10.1016/j.toxlet2010.09.009.View ArticleGoogle Scholar
  • Sheng L, Ze Y, Wang L, Yu X, Hong J, Zhao X, et al. Mechanisms of TiO2 nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. J Biomed Mater Res Part A. 2015;103(3):1141–9. doi:10.1002/jbm.a.35263.View ArticleGoogle Scholar
  • Valdiglesias V, Costa C, Sharma V, Kilic G, Pasaro E, Teixeira JP, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol. 2013;57:352–61. doi:10.1016/j.fct.2013.04.010.View ArticleGoogle Scholar
  • Mao ZL, Xu B, Ji XL, Zhou K, Zhang XM, Chen MJ, et al. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nanoscale. 2015;7(18):8466–75. doi:10.1039/c5nr01448d.View ArticleGoogle Scholar
  • Coccini T, Grandi S, Lonati D, Locatelli C, De Simone U. Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology. 2015;48:77–89. doi:10.1016/j.neuro.2015.03.006.View ArticleGoogle Scholar
  • Hong FS, Sheng L, Ze YG, Hong J, Zhou YJ, Wang L, et al. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials. 2015;53:76–85. doi:10.1016/j.biomaterials.2015.02.067.View ArticleGoogle Scholar
  • Gissela Marquez-Ramirez S, Laura Delgado-Buenrostro N, Irasema Chirino Y, Gutierrez Iglesias G, Lopez-Marure R. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology. 2012;302(2–3):146–56. doi:10.1016/j.tox.2012.09.005.View ArticleGoogle Scholar
  • Huerta-Garcia E, Antonio Perez-Arizti J, Gissela Marquez-Ramirez S, Laura Delgado-Buenrostro N, Irasema Chirino Y, Gutierrez Iglesias G, et al. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med. 2014;73:84–94. doi:10.1016/j.freeradbiomed.2014.04.026.View ArticleGoogle Scholar
  • Kenzaoui BH, Bernasconi CC, Guney-Ayra S, Juillerat-Jeanneret L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J. 2012;441:813–21. doi:10.1042/bj20111252.View ArticleGoogle Scholar
  • Liu X, Ren X, Deng X, Huo Y, Xie J, Huang H, et al. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials. 2010;31(11):3063–70. doi:10.1016/j.biomaterials.2009.12.054.View ArticleGoogle Scholar
  • Fujioka K, Hanada S, Inoue Y, Sato K, Hirakuri K, Shiraishi K, et al. Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers. Int J Mol Sci. 2014;15(7):11742–59. doi:10.3390/ijms150711742.View ArticleGoogle Scholar
  • Niska K, Santos-Martinez MJ, Radomski MW, Inkielewicz-Stepniak I. CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: protective effect of crocetin. Toxicol Vitro. 2015;29(4):663–71. doi:10.1016/j.tiv.2015.02.004.View ArticleGoogle Scholar
  • Xie YL, Wang YY, Zhang T, Ren GG, Yang Z. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci. 2012;19:11. doi:10.1186/1423-0127-19-14.View ArticleGoogle Scholar
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014;37(3):336–47. doi:10.3109/01480545.2013.866134.View ArticleGoogle Scholar
  • Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res. 2015;136:253–63. doi:10.1016/j.envres.2014.11.006.View ArticleGoogle Scholar
  • Gitrowski C, Al-Jubory AR, Handy RD. Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicol Lett. 2014;226(3):264–76. doi:10.1016/j.toxlet.2014.02.014.View ArticleGoogle Scholar
  • Lin X, Li J, Ma S, Liu G, Yang K, Tong M, et al. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One. 2014. doi:10.1371/journal.pone.0110247.Google Scholar
  • Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN, et al. Biomarker evaluation in fish after prolonged exposure to nano-TiO2: influence of illumination conditions and crystal phase. J Nanosci Nanotechnol. 2015;15(7):5424–33. doi:10.1166/jnn.2015.10021.View ArticleGoogle Scholar
  • Numano T, Xu J, Futakuchi M, Fukamachi K, Alexander DB, Furukawa F, et al. Comparative study of toxic effects of anatase and rutile type nanosized titanium dioxide particles in vivo and in vitro. Asian Pac J Cancer Prev. 2014;15(2):929–35. doi:10.7314/apjcp.2014.15.2.929.View ArticleGoogle Scholar
  • Sekar D, Falcioni ML, Barucca G, Falcioni G. DNA damage and repair following in vitro exposure to Two different forms of titanium dioxide nanoparticles on trout erythrocyte. Environ Toxicol. 2014;29(1):117–27. doi:10.1002/tox.20778.View ArticleGoogle Scholar
  • Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. 2015;28(3):501–9. doi:10.1021/tx500479m.View ArticleGoogle Scholar
  • Espinosa-Cristobal LF, Martinez-Castanon GA, Loyola-Rodriguez JP, Patino-Marin N, Reyes-Macias JF, Vargas-Morales JM, et al. Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. Journal of Nanoparticle Research. 2013. doi:10.1007/s11051-013-1702-6.Google Scholar
  • Choi J, Kim H, Kim P, Jo E, Kim H-M, Lee M-Y, et al. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Env Health Part A. 2015;78(4):226–43. doi:10.1080/15287394.2014.949949.View ArticleGoogle Scholar
  • Shinohara N, Danno N, Ichinose T, Sasaki T, Fukui H, Honda K, et al. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 2014;8(2):132–41. doi:10.3109/17435390.2012.763001.View ArticleGoogle Scholar
  • Yin J, Kang C, Li Y, Li Q, Zhang X, Li W. Aerosol inhalation exposure study of respiratory toxicity induced by 20 nm anatase titanium dioxide nanoparticles. Toxicol Res. 2014;3(5):367–74. doi:10.1039/c4tx00040d.View ArticleGoogle Scholar
  • Medina-Reyes EI, Deciga-Alcaraz A, Freyre-Fonseca V, Delgado-Buenrostro NL, Flores-Flores JO, Gutierrez-Lopez GF, et al. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane. Environ Res. 2015;136:424–34. doi:10.1016/j.envres.2014.10.016.View ArticleGoogle Scholar
  • Tong T, Shereef A, Wu J, Chu Thi Thanh B, Kelly JJ, Gaillard J-F, et al. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol. 2013;47(21):12486–95. doi:10.1021/es403079h.View ArticleGoogle Scholar
  • Silva RM, TeeSy C, Franzi L, Weir A, Westerhoff P, Evans JE, et al. Biological response to nano-scale titanium dioxide (Tio2): role of particle dose, shape, and retention. J Toxicol Env Health Part A. 2013;76(16):953–72. doi:10.1080/15287394.2013.826567.View ArticleGoogle Scholar
  • Oosthuizen MA, Oberholzer HM, Scriba MR, van der Spuy WJ, Pretorius E. Evaluation of the morphological changes in the lungs of BALB/c mice after inhalation of spherical and rod-shaped titanium nanoparticles. Micron. 2012;43(8):863–9. doi:10.1016/j.micron.2012.02.003.View ArticleGoogle Scholar
  • Hamilton Jr RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Particle and Fibre Toxicology. 2009. doi:10.1186/1743-8977-6-35.Google Scholar
  • Rossi EM, Pylkkanen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, et al. Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci. 2010;113(2):422–33. doi:10.1093/toxsci/kfp254.View ArticleGoogle Scholar
  • Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, et al. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS One. 2011. doi:10.1371/journal.pone.0020112.Google Scholar
  • A.M. Gatti , F. Rivasi “ Biocompatibility of micro- and nanoparticles Part I in liver and kidney.” Biomaterials  june 2002, vol 23 , issue 11 , 2381-2387
  • A.M. Gatti: Biocompatibility of micro- and nano-particles in the colon (part II)  Biomaterials vol.25, 3, Feb 2004 385-392
  •  Kirkpatrick, C. J., Barth, S., Gerdes, T., Krump-Konvalinkova, V., and Peters, K., [Pathomechanisms of impaired wound healing by metallic corrosion products]. Mund Kiefer Gesichtschir 2002, 6, 183-190.
  • Peters, Unger, Gatti, Monari, Kirkpatrick Effects of nano-scaled particles on endothelial cell function in vitro:Studies on viability, proliferation and inflammation, J. of Material Science: Mat. in Medicine 15 (4),  321-325, 2004.
  • AM. Gatti, Montanari, Monari, Gambarelli, Capitani, Parisini Detection of micro and nanosized biocompatible particles in blood. J. of Mat. Sci. Mat in Med. 15 (4): 469-472, April 2004
  •  AM Gatti Risk assessment of micro and nanoaprticles and the human health, Chapter  of Handbook  of  Nanostructured biomaterials and their applications ed American Scientific Publisher USA 2005, cap. 12, 347-369
  • Gatti AM, Symposium Keynote Presentation “Risk Assessment of Nano-Particles and Nano-Technologies for Human Health. 7th World Biomaterials Congress- Sindney (Australia)  2004 (pag. 748-749).
  • M. Lucarelli, A.M. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari, D. Boraschi “Innate defence function of macrophages can be biased by nano-sized ceramic and metallic particles”  Cytokin Network, Decembre 2004, Vol 15 No. 4,pag 339-346
  • A. Gatti, S. Montanari, A. Gambarelli, F. Capitani, R. Salvatori “ In-vivo short- and long-term evaluation of the interaction material-blood” Journal of Materials Science Materials in Medicine, 2005, 16, 1213-19.
  • Alargova R.G., Deguchi S., & Tsujii K. (2001) Stable colloidal dispersions of fullerenes in polar
  • organic solvents. J Am Chem.Soc. 123, 10460-1
  • Translocation of inhaled ultrafine particles to the brain. Inhal.Toxicol 16 , 437-445.
  • Peters K., Unger R.E., Kirkpatrick C.J., Gatti A.M., & Monari E. (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J.Mater.Sci.Mater.Med. 15, 321-325.
  • Rahman Q., Lohani M., Dopp E., Pemsel H., Jonas L., Weiss D.G., & Schiffmann D. (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ.Health Perspect. 110, 797-800.
  • Rajagopalan P., Wudl F., Schinazi R.F., & Boudinot F.D. (1996) Pharmacokinetics of a watersoluble fullerene in rats. Antimicrob.Agents Chemother. 40, 2262-2265.
  • Raloff J. (2005) Nano Hazards: Exposure to minute particles harms lungs, circulatory system. Science News Online 167, 179 Available at
  • M. Ballestri, A.Baraldi, A.M. Gatti, L.Furci, A.Bagni, P.Loria, R.Rapanà, N. Carulli, A.Albertazzi “ Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses”  Gastroenterology , 2001, 121; 1234-38)
  •  Oberdorster, G., Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001, 74, 1-8.
  • Oberdorster, G., Oberdorster, E., and Oberdorster, J., Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005.
  • Nemmar, A., Hoet, P. H., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M. F., Vanbilloen, H., Mortelmans, L., and Nemery, B., Passage of inhaled particles into the blood circulation in humans. Circulation 2002, 105, 411-414.
  •  Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., and Cox, C., Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002, 65, 1531-1543.
  • Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C., Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004, 16, 437-445
  • Reichrtova, E., Dorociak, F., and Palkovicova, L., Sites of lead and nickel accumulation in the placental tissue. Hum Exp Toxicol 1998, 17, 176-181
  • Kaiglova, A., Reichrtova, E., Adamcakova, A., and Wsolova, L., Lactate dehydrogenase activity in human placenta following exposure to environmental pollutants. Physiol Res 2001, 50, 525-528
  • Nemmar, A., Hoylaerts, M. F., Hoet, P. H., Dinsdale, D., Smith, T., Xu, H., Vermylen, J., and Nemery, B., Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 2002, 166, 998-1004
  • Gatti, A. M., Montanari, S., Monari, E., Gambarelli, A., Capitani, F., and Parisini, B., Detection of micro- and nano-sized biocompatible particles in the blood. J Mater Sci Mater Med 2004, 15, 469-472
  • Pope, C. A., 3rd, Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk?, Environ Health Perspect 2000, 108 Suppl 4, 713-723
  • Cook-Mills, J. M., and Deem, T. L., Active participation of endothelial cells in inflammation. J Leukoc Biol 2005, 77, 487-495
  •  Montgomery, K. F., Osborn, L., Hession, C., Tizard, R., Goff, D., Vassallo, C., Tarr, P. I., Bomsztyk, K., Lobb, R., Harlan, J. M., and et al., Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Proc Natl Acad Sci U S A 1991, 88, 6523-6527.
  • Roebuck, K. A., Rahman, A., Lakshminarayanan, V., Janakidevi, K., and Malik, A. B., H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem 1995, 270, 18966-18974
  • Mukaida, N., Okamoto, S., Ishikawa, Y., and Matsushima, K., Molecular mechanism of interleukin-8 gene expression. J Leukoc Biol 1994, 56, 554-558.
  • Peters, K., Schmidt, H., Unger, R. E., Otto, M., Kamp, G., and Kirkpatrick, C. J., Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. Biomaterials 2002, 23, 3413-3419.
  • 0467.
  •  Andrievsky GV, Klochkov VK,BordyuhAB, & Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364, 8-17.
  •  Bahnemann DW, Kholuiskaya SN, Dillert R, Kulak AI, & Kokorin AI (2002) Photodestruction of dichloroacetic acid catalyzed ny nano-sized TiO2 particles. Appl Catalysis B-Environmental 36,161-169.
  •  Ballou B., Lagerholm B.C., ErnstL.A., Bruchez M.P., & Waggoner A.S. (2004) Noninvasive imaging of quantum dots in mice. Bioconjug.Chem. 15, 79-86.
  •  Beck-Speier I., Dayal N., Karg E., Maier K.L., Roth C., Ziesenis A., & Heyder J. (2001) Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages. Environ.Health Perspect. 109 Suppl 4, 613-618.
  •  Bermudez E., Mangum J.B., Wong B.A., Asgharian B., Hext P.M., Warheit D.B., & Everitt J.I. (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol.Sci. 77, 347-357.
  •  Borm P.J. (2002) Particle toxicology: from coal mining to nanotechnology. Inhal.Toxicol 14, 311-324.
  • Castranova V (2000) From coal mine to quartz: mechanisms of pulmonary pathogenicity nhal.Toxicol 12, 7-14.
  •  Chen HH (1997) Renal effects of water-soluble polyarylsulfonated C-60 inrats with an acute toxicity study. Fullerne Sci tech 5, 1387-1396.
  •  Chen H.H., Yu C., Ueng T.H., Chen S., Chen B.J., Huang K.J., & Chiang L.Y. (1998) Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol. 26, 143-151.
  •  Churg A., Stevens B., & Wright J.L. (1998) Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system. Am.J.Physiol 274, L81-L86.
  •  Colvin V.L. (2003) The potential environmental impact of engineered nanomaterials. Nat.Biotechnol. 21, 1166-1170.
  • Cui D., Tian F., Ozkan C.S., Wang M., & Gao H. (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol.Lett. 155, 73-85.
  • Da Ros T & PratoM (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 8, 663-669.
  • Da Ros T., Spalluto G., &PratoM. (2001) Biological Applications of Fullerene Derivatives: A Brief Overview. Croatica Chemica Acta 74, 743-755.
  • Dagani R (2003) Nanomaterials: Safe or unsafe? Chem Eng News 81, 30-33.
  • Deguchi S, Alargova R.G., & Tsujii K. (2001) Stable dispersions of fullerenes, C-60 and C-70, in water. Preparation and Characterization. Langmuir 17, 6013-6017.
  • Derfus A., Chan W., & Bhatia S. (2004) Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters 4, 11-18
  •  Foley S.,CrowleyC., Smaihi M., Bonfils C., Erlanger B.F., Seta P., & Larroque C. (2002)
  • Cellular localisation of a water-soluble fullerene derivative. Biochem.Biophys.Res.Commun. 294, 116-119.
  •  Goho A. (2004) Buckyballs at bat: Toxic nanomaterials get a tune-up. Science News Online 166,211. Available at
  • Goho A. (2004) Tiny trouble: Nanoscale materials damage fish brains. Science News Online 165,211. Available at
  • Gorman J. (2002) Taming High-Tech Particles. Science News Online 161, 200. Available at
  • Green M. & Howman E. (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1, 121-123.
  • Gref R., Couvreur P., Barratt G., & Mysiakine E. (2003) Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24, 4529-4537.
  • 25. Henry C (2003) Quantum Dot Advances- Studies show that nanoparticles have potential biological application. Chem Eng News 81, 10.
  • Hoet P.H., Bruske-HohlfeldI., & Salata O.V. (2004) Nanoparticles – known and unknown health risks. J.Nanobiotechnology. 2, 12.
  •  Hoshino A., Fujioka K., Oku T., Suga M., Sasaki Y., Ohta T., Yasuhara M., Suzuki K., & Yamamoto K. (2004) Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Letters 4, 2163-2169.
  • Kai Y, Komazawa Y, Miyajima A, Miyata N, & Yamakoshi Y (2003) 60 Fullerene as a novel photoinduced antibiotic. Fuller.Nanotub.Carbon Nanostruc. 11, 79-87.
  • Kamat J.P., Devasagayam T.P., Priyadarsini K.I., Mohan H., & Mittal J.P. (1998) Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes.
  • Chem.Biol.Interact. 114, 145-159.
  • Kleeman MJ, Schauer JJ, & Cass GR (2000) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34, 1132-1142.
  •  Kreuter J., Ramge P., Petrov V., Hamm S., Gelperina S.E., Engelhardt B., Alyautdin R., von Briesen H., & Begley D.J. (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm.Res. 20, 409-416.
  • Kuhn K.P., Chaberny I.F., Massholder K., Stickler M., Benz V.W., Sonntag H.G., & Erdinger L. (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53, 71-77.
  • Lademann J et al (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12, 247-256.
  • Lam C.W., James J.T., McCluskey R., & Hunter R.L. (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77, 126-134.
  •  Lecoanet H.F., Bottero J.Y., & Wiesner M.R. (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ.Sci.Technol. 38, 5164-5169.
  • Lecoanet H.F. & Wiesner M.R. (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ.Sci.Technol. 38, 4377-4382.
  • Liu Z.S., Tang S.L., & Ai Z.L. (2003) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol. 9, 1968-1971.
  • Maness P.C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., & Jacoby W.A. (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl.Environ.Microbiol. 65, 4094-4098.
  • Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., & Castranova V. (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined singlewalled carbon nanotube material. J.Toxicol.Environ.Health A 67, 87-107.
  • Mc-Hedlov-Petrossyan NO K.V.A.G. (1997) Colloidal dispersions of fullerene C-60 inwater: some properties and regularities of coagulation by electrolytes. J Chem Soc- Faraday Trans 93, 4343-
  • 4346.
  • Monti D., Moretti L., Salvioli S., Straface E., Malorni W., Pellicciari R., Schettini G., Bisaglia M., Pincelli C., Fumelli C., Bonafe M., & Franceschi C. (2000) C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem.Biophys. Res. Commun. 277, 711-717.
  • Nagaveni K., Sivalingam G., Hegde M.S., & Madras G. (2004) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ.Sci.Technol. 38, 1600-1604.
  •  Nakagawa Y., Wakuri S., Sakamoto K., & Tanaka N. (1997) The photogenotoxicity of titanium dioxide particles. Mutat.Res. 394, 125-132.
  • Nakajime N, Nishi C, Li FM, & Ikada Y (1996) Photo-induced cytotoxicity of water-soluble fullerenes. Fullerne Sci tech 4, 1-19.
  •  Oberdorster E. (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. E viron.Health Perspect. 112, 1058-1062.
  • Oberdorster G. (2001) Pulmonary effects of inhaled ultrafine particles. Int.Arch.Occup.Environ Health 74, 1-8
  • Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., & Cox C. (2004)
  • Rancan F., Rosan S., Boehm F., Cantrell A., Brellreich M., Schoenberger H., Hirsch A., & Moussa F. (2002) Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J.Photochem.Photobiol.B 67, 157-162.
  • Rincon A.G. & Pulgarin C. (2003) Photocatalytical inactivation of E. coli: effect of (continuousintermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catalysis BEnvironmental 44, 263-284.
  • Sayes C., Fortner J., Guo W., Lyon D., Boyd A., Ausman K., Tao Y., Sitharaman B., Wilson L.,Hughes J., West J., & Colvin V.L. (2004) The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Letters 4, 1881-1887.
  • Schulz J., Hohenberg H., Pflucker F., Gartner E., Will T., Pfeiffer S., Wepf R., Wendel V., Gers-Barlag H., & Wittern K.P. (2002) Distribution of sunscreens on skin. Adv.Drug Deliv.Rev. 54 Suppl 1, S157-S163.
  • Shiohara A., Hoshino A., Hanaki K., Suzuki K., & Yamamoto K. (2004) On the cyto-toxicity caused by quantum dots. Microbiol.Immunol. 48, 669-675.
  • Shvedova A.A., Castranova V., Kisin E.R., Schwegler-Berry D.,MurrayA.R., Gandelsman V.Z., Maynard A., & Baron P. (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J.Toxicol.Environ.Health A 66, 1909-1926.
  • Voura E.B., Jaiswal J.K., Mattoussi H., & Simon S.M. (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat.Med. 10, 993-998
  • Wang I.C., Tai L.A., Lee D.D., Kanakamma P.P., Shen C.K., Luh T.Y., Cheng C.H., & Hwang K.C. (1999) C(60) and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med.Chem 42, 4614-4620.
  • Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A., & Webb T.R. (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77,117-125.
  • Yang X.L., Fan C.H., & Zhu H.S. (2002) Photo-induced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism. Toxicol In Vitro 16, 41-46.
  • Zhou G., Duan W., & Gu B. (2004) Single electron emission from the closed-tips of single-walled carbon nanotubes. J.Chem.Phys. 121, 12600-12605.
  • Bexiga, M.G., Varela, J.A., Wang, F., Fenaroli, F., Salvati, A., Lynch, I., Simpson, J.C., Dawson, K.A. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology. 2010 Dec 13. [Epub ahead of print]
  • Brown DM, Hutchison, L., Donaldson, K., Stone, V. (2007) The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am. J. Physiol. Lung Cell Mol. Physiol. 292,L1444-1451.
  • Brown DM, Wilson, M. R., MacNee, W., Stone, V., Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol.Appl.Pharmacol. 175,191-199.
  • Cabaleiro-Lago C, Quinlan-Pluck, F., Lynch, I., Lindman, S., Minogue, A.M., Thulin, E., Walsh, D.M., Dawson, K.A., Linse, S. (2008). Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Am Chem Soc. 130,15437-15443.
  • Cedervall T, Lynch, I., Foy, M., Berggård, T.,  Donelly, S., Cagney, G., Linse, S., Dawson, K.A. (2007a). Detailed Identification of Plasma Proteins Absorbed to Copolymer Nanoparticles. Angewandte Chemie Int. Ed. 46,5754-5756.
  • Cedervall T, Lynch, I., Lindman, S., Nilsson, H., Thulin, E., Linse, S., Dawson K.A. (2007b). Understanding the nanoparticle protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS 104,2050-2055.
  • Duffin R, Tran, L., Brown, D., Stone, V., Donaldson, K. (2007). Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol. 19,849-856.
  • Kreyling W, Möller, W., Semmler-Behnke, M., and Oberdörster, G.. (2007). Particle Dosimetrie: Deposition and clearance from the respiratory tract and translocasion towards extra- pulmonary sites. . (.Francis & Taylor, Boca Raton.).
  • Linse S, Cabaleiro-Lago, C., Xue, W.-F., Lynch, I., Lindman, S., Thulin, E., Radford, S., Dawson, K.A. (2007). Nucleation of protein fibrillation by nanoparticles. PNAS 104,8691-8696.
  • Lynch I, Dawson, K.A., Linse, S. (2006). Detecting crytpic epitopes in proteins adsorbed onto nanoparticles. Science STKE 327,pp pe 14.
  • Nel A, Xia, T., Mädler, L., Li, N. (2006). Toxic Potential of Materials at the Nanolevel. Science 311,622 – 627.
  • Nic Ragnaill M., Brown M., Ye D., Bramini M., Callanan S., Lynch I., Dawson K.A. Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis. 2011, European Journal of Pharmaceutics and Biopharmaceutics. Epub ahead of print
  • Walczyk D, Baldelli-Bombelli, F., Campbell, A., Lynch, I., Dawson, K.A. (2009). What the Cell “Sees” in Bionanoscience, J. Am. Chem. Soc. 2010, 132, 5761-5768.
  • Xia T, Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., Nel, A.E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6,1794-1807.
  • Adenot, F., Buil, M., 1992. Modelling of the corrosion of the cement paste by
    deionized water. Cem. Concr. Res. 22, 489e496.
    8846(92)90092-A. Special Double Issue Proceedings ofSymposium D of the EMRS
    Fall Meeting 1991.
  • Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., Nowack, B.,
    2013. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by
    weathering. Environ. Sci. Process. Impacts. 15, 2186.
  • Al-Kattan, A., Wichser, A., Zuin, S., Arroyo, Y., Golanski, L., Ulrich, A., Nowack, B.,
    2014. Behavior of TiO 2 released from nano-TiO 2 -containing paint and comparison
    to pristine nano-TiO 2. Environ. Sci. Technol. 48, 6710e6718. http://
  • Bolyard, S.C., Reinhart, D.R., Santra, S., 2013. Behavior of engineered nanoparticles in landfill leachate. Environ. Sci. Technol. 47, 8114e8122.
  • Bossa, N., Chaurand, P., Vicente, J., Borschneck, D., Levard, C., Aguerre-Chariol, O.,
    Rose, J., 2015. Micro and nano-X-ray computed-tomography: a step forward in
    the characterization of the pore network of a leached cement paste. Cem. Concr.
    Res. 67, 138e147.
  • Botta, C., Labille, J., Auffan, M., Borschneck, D., Miche, H., Cabie, M., Masion, A.,
    Rose, J., Bottero, J.-Y., 2011. TiO2-based nanoparticles released in water from
    commercialized sunscreens in a life-cycle perspective: structures and quantities.
    Environ. Pollut. 159, 1543e1550.
  • Broekhuizen, P., Broekhuizen, F., Cornelissen, R., Reijnders, L., 2011. Use of nanomaterials in the European construction industry and some occupational health
    aspects thereof. J. Nanoparticle Res. 13, 447e462.
  • Caballero-Guzman, A., Nowack, B., 2016. A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ.Pollut. 213, 502e517.
  • Cardenas, C., Tobon, J.I., García, C., Vila, J., 2012. Functionalized building materials:
    photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles.
    Constr. Build. Mater. 36, 820e825. CEMBUREAU, the E.C.A., 2014. Activity Report 2014.
  • Chupas, P.J., Corbin, D.R., Rao, V.N.M., Hanson, J.C., Grey, C.P., 2003. A combined
    solid-state NMR and diffraction study of the structures and acidity of fluorinated
    Aluminas: Implications for catalysis. J. Phys. Chem. B. 107, 8327e8336.
  • Cook, R.A., Hover, K., 1999. Mercury porosimetry of hardened cement pastes. Cem.
    Concr. Res. 29, 933e943.
  • Cook, R.A., Hover, K.C., 1999a. Mercury porosimetry of hardened cement pastes.
    Cem. Concr. Res. 29, 933e943.
  • Cook, R.A., Hover, K.C., 1999b. Mercury porosimetry of hardened cement pastes.
    Cem. Concr. Res. 29, 933e943.
  • Croker, D., Loan, M., Hodnett, B.K., 2009. Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species. Cryst. Growth Des. 9,
  • Demeestere, K., Dewulf, J., De Witte, B., Beeldens, A., Van Langenhove, H., 2008.
    Heterogeneous photocatalytic removal of toluene from air on building materials
    enriched with TiO2. Build. Environ. 43, 406e414.
  • Faucon, P., Adenot, F., Jacquinot, J.F., Petit, J.C., Cabrillac, R., Jorda, M., 1998. Longterm behaviour of cement pastes used for nuclear waste disposal: review of
    physico-chemical mechanisms of water degradation. Cem. Concr. Res. 28,
  • Faucon, P., Le Bescop, P., Adenot, F., Bonville, P., Jacquinot, J.F., Pineau, F., Felix, B.,
    1996. Leaching of cement: study of the surface layer. Cem. Concr. Res. 26,
    Folli, A., Pade, C., Hansen, T.B., De Marco, T., Macphee, D.E., 2012. TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution
    chemistry. Cem. Concr. Res. 42, 539e548.
  • Foss Hansen, S., Larsen, B.H., Olsen, S.I., Baun, A., 2007. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243e250. http://
  • Fraval, S., Bottero, J.Y., Stone, W.E.E., Broekaert, P., Masin, F., Pirotte, P., Mosnier, F., 1997. Nmr evidence of silicate and carbonate competition for cations in solution
    at low Temperature: case of Ca2þ, Zn2þ, Pb2þ, and Al3þ. Langmuir 13,
  • Froggett, S.J., Clancy, S.F., Boverhof, D.R., Canady, R.A., 2014. A review and
    perspective of existing research on the release of nanomaterials from solid
    nanocomposites. Part. Fibre Toxicol. 11, 17.
  • Galle, C., 2001. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-,
    vacuum-, and freeze-drying. Cem. Concr. Res. 31, 1467e1477.
    Gondikas, A.P., Von Der Kammer, F., Reed, R.B.,Wagner, S., Ranville, J.F., Hofmann, T.,
    2014. Release of TiO2 nanoparticles from sunscreens into surface waters: a oneyear
    survey at the Old Danube recreational lake. Environ. Sci. Technol. http://
    Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the
    environment. J. Environ. Monit. 13, 1145e1155.
    Gottschalk, F., Scholz, R.W., Nowack, B., 2010. Probabilistic material flow modeling
    for assessing the environmental exposure to compounds: methodology and an
    application to engineered nano-TiO2 particles. Env. Model Softw. 25, 320e332.
    Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled environmental
    concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for
    different regions. Environ. Sci. Technol. 43, 9216e9222.
    Guerrini, G.L., 2012. Photocatalytic Cement-based Materials: Applications and New
    Perspectives Part 1 and 2.
    Haga, K., Sutou, S., Hironaga, M., Tanaka, S., Nagasaki, S., 2005a. Effects of porosity
    on leaching of Ca from hardened ordinary Portland cement paste. Cem. Concr.
    Res. 35, 1764e1775.
    Haga, K., Sutou, S., Hironaga, M., Tanaka, S., Nagasaki, S., 2005b. Effects of porosity
    on leaching of Ca from hardened ordinary Portland cement paste. Cem. Concr.
    Res. 35, 1764e1775.
    Halim, C.E., Short, S.A., Scott, J.A., Amal, R., Low, G., 2005. Modelling the leaching of
    Pb, Cd, As, and Cr from cementitious waste using PHREEQC. J. Hazard. Mater.
    125, 45e61.
    Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D., 1996.
    Two-dimensional detector software: from real detector to idealised image or
    two-theta scan. High. Press. Res. 14, 235e248.
    Hincapie, I., Caballero-Guzman, A., Hiltbrunner, D., Nowack, B., 2015. Use of engineered
    nanomaterials in the construction industry with specific emphasis on
    paints and their flows in construction and demolition waste in Switzerland.
    Waste Manag. 43, 398e406.
    Jain, J., Neithalath, N., 2009. Analysis of calcium leaching behavior of plain and
    modified cement pastes in pure water. Cem. Concr. Compos 31, 176e185. http://
    Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H.,
    Brunner, S., Vonmont, H., Burkhardt, M., Boller, M., 2008a. Synthetic TiO2
    nanoparticle emission from exterior facades into the aquatic environment.
    Environ. Pollut. 156, 233e239.
    Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H.,
    Brunner, S., Vonmont, H., Burkhardt, M., Boller, M., 2008b. Synthetic TiO2
    nanoparticle emission from exterior facades into the aquatic environment.
    Environ. Pollut. 156, 233e239.
    Keller, A.A., McFerran, S., Lazareva, A., Suh, S., 2013. Global life cycle releases of
    engineered nanomaterials. J. Nanoparticle Res. 15
    Lee, J., Mahendra, S., Alvarez, P.J.J., 2010. Nanomaterials in the construction industry:
    a review of their applications and environmental health and safety
    considerations. ACS Nano. 4, 3580e3590.
    Mackevica, A., Foss Hansen, S., 2016. Release of nanomaterials from solid nanocomposites
    and consumer exposure assessment e a forward-looking review.
    Nanotoxicology 1e13.
    Mackevica, A., Olsson, M.E., Hansen, S.F., n.d. The release of silver nanoparticles
    from commercial toothbrushes. J. Hazard. Mater.
    Macwan, D.P., Dave, P.N., Chaturvedi, S., 2011. A review on nano-TiO2 solegel type
    syntheses and its applications. J. Mater. Sci. 46, 3669e3686.
    Maggos, T., Bartzis, J.G., Liakou, M., Gobin, C., 2007. Photocatalytic degradation of
    NOx gases using TiO2-containing paint: a real scale study. J. Hazard. Mater. 146,
    Makar, J., 2011. The effect of SWCNT and other nanomaterials on cement hydration
    and reinforcement. In: Gopalakrishnan, K., Birgisson, B., Taylor, P., Attoh-
    Okine, N.O. (Eds.), Nanotechnology in Civil Infrastructure. Springer, Berlin
    Heidelberg, pp. 103e130.
    Mitrano, D.M., Motellier, S., Clavaguera, S., Nowack, B., 2015. Review of nanomaterial
    aging and transformations through the life cycle of nano-enhanced products.
    Environ. Int. 77, 132e147.
    Mueller, N.C., Nowack, B., 2008. Exposure modeling of engineered nanoparticles in
    the environment. Environ. Sci. Technol. 42, 4447e4453.
    Nochaiya, T., Wongkeo, W., Chaipanich, A., 2010. Utilization of fly ash with silica
    fume and properties of Portland cementefly ashesilica fume concrete. Fuel 89,
    Nowack, B., Ranville, J.F., Diamond, S., Gallego-Urrea, J.A., Metcalfe, C., Rose, J.,
    Horne, N., Koelmans, A.A., Klaine, S.J., 2012. Potential scenarios for nanomaterial
    release and subsequent alteration in the environment. Environ. Toxicol. Chem.
    31, 50e59.
    Patterson, A.L., 1939. The scherrer formula for x-ray particle size determination.
    Phys. Rev. 56, 978e982.
    Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., 2012. Industrial production
    quantities and uses of ten engineered nanomaterials in Europe and the world.
    J. Nanoparticle Res. 14, 1e11.
    Robichaud, C.O., Tanzil, D., Weilenmann, U., Wiesner, M.R., 2005. Relative risk
    analysis of several manufactured Nanomaterials: an insurance industry
    context. Environ. Sci. Technol. 39, 8985e8994.