DIOSSIDO DI TITANIO UN RISCHIO PER LA SALUTE?

un articolo dell’ ARPA Emilia Romagna

IL DIOSSIDO DI TITANIO, SOPRATTUTTO IN FORMA NANOPARTICELLARE INCONTRA UN UTILIZZO  QUOTIDIANO CRESCENTE (IN FILTRI SOLARI, VERNICI, SUPERFICI AUTOPULENTI, COLORANTI  ALIMENTARI ECC.). NUMEROSI STUDI TOSSICOLOGICI HANNO RIPORTATO CHE PROVOCA EFFETTI AVVERSI ED È CLASSIFICATO COME POSSIBILE CANCEROGENO.

 

……Per quanto riguarda i dati epidemiologici, lavoratori esposti a TiO2
respirabile tendono ad accumularlo a livello polmonare, dove provoca fibrosi (18). Studi epidemiologici condotti negli Usa e in Canada non riportano un eccesso di rischio di cancro polmonare (19; 20).

Uno studio epidemiologico retrospettivo condotto in sei Paesi europei ha evidenziato un piccolo ma significativo aumento della mortalità per tumore polmonare tra i lavoratori maschi esposti a TiO2 rispetto alla popolazione
generale.  Nessuna relazione dose-risposta è  stata però osservata (21).

Benché al momento non supportate in modo chiaro da dati epidemiologici, le evidenze sperimentali sono state ritenute sufficienti dall’Agenzia internazionale per la ricerca sul cancro (Iarc) per l’inserimento di  TiO2 (indipendentemente da dimensione  e forma delle particelle) in classe 2B (possibile cancerogeno per l’uomo).

https://monographs.iarc.fr/ENG/Publications/techrep42/TR42-4.pdf

Recentemente, anche il Niosh (National Institute for Occupational Safety and Health, Usa) ha classi cato TiO2 nanoparticellare, ma non quello sub-microparticellare, come cancerogeno occupazionale e ne ha stabilito valori limite in ambito occupazionale di erenti: 0.3 mg/m3 per il primo e 2.4 mg/m3 per il secondo.
Se ne deduce che l’esposizione ambientale non costituisce al momento un rischio per la salute della popolazione generale, mentre l’esposizione occupazionale dovrebbe essere controllata.

Misure protettive dovrebbero pertanto essere applicate non soltanto nelle  fasi di produzione industriale di TiO2 , ma anche durante certe applicazioni, quali la rimozione di vernici o la distruzione di materiali contenenti TiO2.

In conclusione, l’esposizione complessiva a TiO2 nanoparticellare non è nota. Questo non consente una valutazione quantitativa del rischio posto da TiO2 nanoparticellare.

Data la sua versatilità in termini di dimensione e forma delle particelle e dell’attività fotocatalitica, non è possibile giungere ad alcuna onsiderazione conclusiva in quanto le diverse forme di TiO2 possono agire in maniera molto diversa.

In questo contesto, un’indicazione obbligatoria e chiara della presenza di TiO2 nanoparticellare nei prodotti alimentari e cosmetici potrebbe consentire una migliore definizione dello scenario espositivo, che risulta essenziale per un processo di valutazione del rischio

leggi l’articolo completo:
http://www.arpa.emr.it/cms3/documenti/_cerca_doc/ecoscienza/ecoscienza2013_1/manucra_es1_13.pdf

 

Cost Optimal and Nearly Zero-Energy Buildings (nZEB)

Jarek Kurnitski Editor

Cost Optimal and Nearly Zero-Energy Buildings (nZEB)

Definitions, Calculation Principles, and Case Studies

Springer

 

Preface

Nearly zero-energy (nZEB) buildings and cost-optimal energy performance have suddenly become a widely discussed topic across Europe. How to construct these buildings, how to design them, and above all what it means are relevant questions that many building professionals and decision makers from both the public and private sector need to ask and find answers to. The current situation is historic, as the EU has to be ready for the mass construction of nZEB buildings by 2019.
Behind the scenes of this system-wide change in construction, directives on
energy performance in buildings in combination with related R&D at all levels, from technology to calculation methods and regulation, have made it possible to design and construct buildings with remarkably improved energy performance.
nZEB buildings are expected to use 2–3 times less energy compared to today’s modern buildings, should also provide a high-quality indoor environment and long service life, and have to be easy to operate and maintain. Yet, there is still a long way to go in order to realize these ambitious goals in practice, and we hope this book represents a valuable step forward.
There are good reasons for European regulations on the energy performance of buildings: Buildings account for roughly 40 % of total primary energy use in the EU and globally, and also offer the greatest cost-effective energy saving potential compared to other sectors. Unlike the energy and transport sectors, in the building sector the technology for energy savings already exists, making rapid execution possible once the necessary skills and regulations are in place.

Uniform implementation would accelerate the process, as differences in regulations complicate building design, installation and construction, as well as manufacturing and sales in the common market area.
In this book, we have collected the latest information available on nZEB buildings;  the respective authors are well-versed in the preparation of European REHVA nZEB technical definitions, as well as national regulations and nZEB requirements. They present the latest information on technical definitions, system boundaries, and methodologies for energy performance calculations, as well as descriptions of technical solutions and design processes on the basis of nZEB building case studies—essential resources for all those who need to understand and/or work with the energy performance of buildings.
The authors believe that a healthy and ongoing exchange of information will help to promote more concrete and harmonized national nZEB regulations, and to find cost-effective design processes and technical solutions for future nZEB buildings.

Click here to download the e-book

 

 

 

CHE COSA SONO LE NANOPATOLOGIE?

CHE COSA SONO LE NANOPATOLOGIE?

Stefano Montanari –

Direttore Scientifico del laboratorio Nanodiagnostics

Via E. Fermi, 1/L – 41057 San Vito (Modena)

 www.nanodiagnostics.it

 Pur coinvolgendo non pochi campi della medicina, l’argomento è senza dubbio nuovo al di fuori di ambiti scientifici molto particolari e ancora riservati agli addetti ai lavori. Volendo offrire una definizione succinta, le nanopatologie sono le malattie provocate da micro e,  soprattutto, nanoparticelle inorganiche che in qualche modo riescono a penetrare nell’organismo, umano o animale che sia, e non ha alcuna importanza come queste entità piccolissime riescono ad entrare o come sono prodotte. È un dato di fatto che i meccanismi seguiti da una particella una volta che questa sia riuscita a penetrare nell’organismo sono gli stessi, indipendentemente dalla sua origine.

All’inizio degli anni Novanta, il Laboratorio di Biomateriali dell’Università di Modena fondato e diretto dalla dottoressa Antonietta Gatti si trovò ad investigare sul perché un filtro cavale si fosse rotto all’interno della vena cava di un paziente . Il perché questo si fosse rotto fu un problema di facile soluzione, ma la nostra analisi, eseguita con sistemi fisici, rivelò qualcosa di molto strano, vale a dire la presenza su quell’oggetto di elementi come, ad esempio, il titanio, che non fanno parte dell’organismo di alcun animale superiore né entrano nella composizione del dispositivo. Un paio d’anni più tardi, ci si presentò un caso del tutto analogo e, ancora una volta, trovammo che elementi estranei sia ai tessuti umani sia alla lega metallica del filtro erano presenti. Poi, alla fine del 1998, la dottoressa Gatti ebbe l’occasione di esaminare i reperti bioptici epatici e renali di un paziente che da oltre otto anni soffriva di febbre intermittente unita a gravi compromissioni al fegato e, soprattutto, ai reni, senza che nessuno fosse in grado di dire da dove questi sintomi originassero. Con grande sorpresa, in seguito alle analisi eseguite fu evidente che quei tessuti contenevano micro- e nanoparticelle di materiale ceramico, un materiale identico a quello che costituiva la protesi dentaria usurata che il paziente portava. Ciò che era avvenuto era abbastanza semplice: i detriti che la protesi produceva a causa di una cattiva occlusione e, dunque, di una scorretta masticazione, e di un tentativo maldestro di aggiustamento erano stati inghiottiti per otto anni. Poi questi detriti erano in qualche modo finiti nel fegato e nei reni dove erano restati, provocando una granulomatosi che si era aggravata tanto da condurre il paziente sull’orlo di un trattamento emodialitico cronico che pareva ormai inevitabile. Rimossa la protesi e trattato il soggetto con un’opportuna terapia cortisonica, i sintomi si stabilizzarono, in parte anche regredendo, e non ci fu bisogno di ricorrere all’emodialisi. Cominciammo allora a cercare negli archivi delle Università di Modena e di Magonza (Germania) e del Royal Free Hospital di Londra per avere reperti autoptici e bioptici di pazienti che soffrissero o avessero sofferto di malattie criptogeniche, in particolare quelle delle quali fosse possibile ipotizzare un’origine o, comunque, una componente, infiammatoria. Il materiale su cui cominciammo a lavorare riguardava principalmente varie forme tumorali e granulomatosi di origine non virale e non batterica. In tutti i casi esaminati i campioni contenevano micro- e nanoparticolato inorganico.

Sulla base di quanto stavamo trovando, la dottoressa Gatti chiese ed ottenne un supporto finanziario dalla Comunità Europea per allestire una ricerca più sistematica, e il progetto (QLRT-2002-147), che coinvolse anche le Università di Magonza e di Cambridge, la FEI (gruppo Philips) e la Biomatech (azienda privata di ricerca francese), fu battezzato “Nanopathology”, indicando con quel neologismo lo studio delle patologie indotte da micro- e nanoparticelle.

Si acquistò, allora, un microscopio elettronico a scansione ambientale (ESEM) accessoriato con uno spettroscopio a raggi X a dispersione d’energia (EDS) e si approntò una metodica ad hoc, che ancora non ha uguali al mondo, appropriata per i nostri scopi. Il vantaggio principale di quel tipo di microscopio è la possibilità che questo offre di osservare campioni biologici vitali in condizioni ambientali, vale a dire non sotto vuoto (il che ne farebbe evaporare tutto il contenuto d’acqua, uccidendoli) e senza ricopertura di metalli o di carbone (il che introdurrebbe degl’inquinanti).

L’EDS, invece, permette di eseguire un’analisi elementare assolutamente precisa e puntuale del campione. Iniziate le ricerche, fu subito evidente che il particolato micro- e nanometrico è in grado di entrare nell’organismo e, almeno in parte, non viene affatto eliminato come, invece, era sempre stato dato per scontato pur senza alcuna base scientifica sperimentale, dato che nessuna ricerca in proposito era mai stata eseguita. Fu altrettanto evidente come la via preferenziale d’ingresso di quel materiale sia l’inalazione. A causa delle loro ridottissime dimensioni, quelle particelle, non importa come prodotte, restano sospese nell’aria per tempi lunghissimi. Da qui, vengono inspirate e finiscono negli alveoli polmonari dove, se sono abbastanza grossolane (si parla, comunque di qualche millesimo di millimetro), sono fagocitate dai macrofagi. Una volta che questi corpi estranei sono stati divorati, i macrofagi non sono però capaci di degradarli e, dunque, di distruggerli, perché quei corpi estranei non sono biodegradabili. La conseguenza è che, morto il macrofago, la particella rimane nell’organismo, a meno di quella frazione che i macrofagi sono riusciti a portare a livello delle vie respiratorie superiori per venire poi eliminate tramite l’espettorazione.

Se il particolato è di dimensioni nanometriche, e si parla da qualche decimillesimo di millimetro in giù, questo passa direttamente, entro un minuto, dall’alveolo polmonare alla circolazione sanguigna.

Dal sangue agli organi il passo è breve, soprattutto se si pensa che le nanoparticelle entrano anche nei globuli rossi, un ottimo cavallo di Troia per superare ogni barriera.

 CLICK TO DOWNLOAD  FULL TEXT

 

 

Nuovi rischi per la salute e sicurezza sul lavoro

(tratto dal primo Rapporto dell’Osservatorio  congiunto

Fillea Cgil -Legambiente- OTTOBRE 2012)

INNOVAZIONE E SOSTENIBILITÀ NEL SETTORE EDILIZIO

 capitolo 2.15

L’ immissione nel mercato di un’infinita di nuovi materiali e componenti, che sta caratterizzando un mercato delle costruzioni in rapida evoluzione, rende difficile l’individuazione dei nuovi  rischi correlati per la salute e la sicurezza sul lavoro. Sono infatti tantissimi i nuovi materiali in commercio, alcuni sono potenzialmente dannosi per la salute, ma alla velocita con cui essi sono immessi sul mercato fa riscontro la lentezza delle ricerche sugli esiti tossicologici, e delle procedure atte a regolamentarne gli usi, cosi che spesso ci troviamo di fronte a situazioni di forte rischio, aggravate dalla mancanza di informazione e consapevolezza degli utenti e dei lavoratori.

E’ questo il pericolo che si profila all’orizzonte, soprattutto relativamente all’impiego dei nanomateriali. 

Nelle Tabelle poste in calce al Paragrafo sono sintetizzate le caratteristiche produttive di un campione rappresentativo di materiali innovativi, e sono elencati gli effetti prodotti sull’organizzazione del lavoro e sulla salute e sicurezza dei lavoratori (e degli utenti). Nuovi rischi per la salute e la sicurezza non sono generalmente ascrivibili ai materiali naturali,che sono costituiti da materia prima naturale rigenerabile, dunque hanno un impatto ambientale pressoche nullo e non presentano criticita legate alle fasi di lavorazione e all’uso. Anche i materiali riciclati possono presentare le stesse caratteristiche, a patto che sia controllata la fase di differenziazione del rifiuto, per evitare la presenza, al loro interno, di sostanze tossiche o pericolose. I materiali compositi possono presentare impatti ambientali e rischi, in relazione ai loro componenti, che vanno conosciuti caso per caso, e che non e possibile elencare nello specifico in questo studio.

I nano materiali sono quelli ambientalmente piu ambigui e potenzialmente piu pericolosi: si connotano spesso come ecosostenibili, in quanto fotocatalitici e dunque “mangia smog” (gli intonaci e i prodotti cementizi) oppure battericidi (i piani delle cucine), ma, per le loro caratteristiche microscopiche, essi sono anche potenzialmente pericolosi per la salute. Aumentano le indicazioni sul fatto che i nanomateriali potrebbero essere, per gli esseri umani, piu rischiosi dei corrispondenti materiali in microscala. Tuttavia, va messo in evidenza il termine ‘potrebbero’ poiche a tutt’oggi, le conoscenze  sono troppo limitate per poter generalizzare. Quando si lavora con questi materiali, e di conseguenza consigliabile procedere con un approccio precauzionale.

La rischiosità delle nanoparticelle dipende dalle loro ridotte dimensioni e dalla loro specifica forma. Le ridotta dimensione delle nanoparticelle aumenta la loro reattività chimica, più aggressiva nei confronti del normale funzionamento del corpo umano. Per esempio, molti dei nanomateriali studiati provocano effetti infiammatori più marcati, si ammassano o fissano con più efficacia su determinate parti del corpo impedendone la corretta funzionalità, ma soprattutto, a causa delle piccole dimensioni, la loro superficie è relativamente più ingrandita rispetto al volume (e alla massa) particellare, di modo che la reattività per unità di massa è di gran lunga maggiore. Ciò significa che le nanoparticelle, ad esempio, possono essere talmente piccole da comportarsi come gas, possono penetrare con più profondità  nei polmoni ed essere più facilmente assorbite nel sangue, e, diversamente da quasi tutte le altre sostanze chimiche, possono essere assorbite dai nervi nasali e “facilmente” trasportate al cervello umano, e possono raggiungere punti (cellule, organi) del corpo umano che normalmente sono ben protetti contro l’invasione delle forme di maggiori dimensioni. Anche la forma specifica delle nanoparticelle può influire sulla loro tossicità: per esempio, laddove le particelle possono essere relativamente non tossiche, i nanorod (nanobastoncini) possono invece comportarsi come aghi, e perforare i tessuti umani. A prescindere dai rischi sostanziali, tuttavia, il fattore chiave degli eventuali rischi per la salute generati da nanoprodotti o nanomateriali è la possibilità di esposizione. Quando si parla di esposizione alle nanoparticelle, per i lavoratori edili si intende in primo luogo (e quasi senza eccezione) esposizione ai nanoprodotti (prodotto in cui viene inserito un nanomateriale). Considerati i prodotti utilizzati in genere dai lavoratori edili e le attività che essi svolgono quotidianamente, gli eventuali rischi per la salute riguardano con maggiore probabilità l’esposizione per inalazione di nanomateriali che generano polveri (tramite operazioni di taglio, smerigliatura, perforazione o lavorazione a macchina) o aerosol dalla verniciatura a spruzzo.

scarica il rapporto completo

tutti in classe A

Tutti in classe A  è una campagna di Legambiente che ha un obiettivo molto preciso: mettere in luce l’importanza dell’efficienza energetica in edilizia: attraverso un’analisi termografica del patrimonio edilizio italiano e facendo il punto sul quadro normativo. In questo Rapporto si segnalano i problemi ancora aperti della normativa nazionale, la situazione nelle diverse Regioni rispetto all’applicazione della Direttiva Europea, le buone esperienze di alcuni Comuni attraverso i Regolamenti Edilizi.
I tecnici di Legambiente hanno esaminato 200 immobili in 21 città d’Italia. Il rapporto 2012 Tutti in classe A presenta dunque una radiografia aggiornata del nostro patrimonio edilizio che,  oltre a segnalare esperienze positive o evidenti criticità in case nuove “ma nate già vecchie”, analizza costi e benefici dell’efficienza energetica in edilizia, rileva i problemi ancora aperti della normativa nazionale e fa il punto sulla situazione nelle diverse Regioni rispetto all’applicazione della direttiva europea di riferimento. L’analisi termografica ha riguardato edifici costruiti nel dopoguerra e altri più recenti. Sono state verificate anche le prestazioni di quelli certificati di Classe A e di quelli ristrutturati. Sono stati analizzati 91 edifici costruiti dopo il 2000, ossia dopo che le direttive europee avevano già chiarito tutti i riferimenti in materia di risparmio energetico e isolamento per chi aveva la responsabilità di progettare e costruire. Su quasi tutti questi immobili “nuovi e già vecchi” i problemi sono evidenti – dal Villaggio Olimpico di Torino, alla Giudecca a Venezia fino alla periferia di Bari, dal complesso Porta Nuova di Pescara o al quartiere Bufalotta a Roma, ad esempio – si ravvisano problemi di elementi disperdenti, con distribuzione delle temperature superficiali estremamente eterogenee. Anche, spesso, per edifici che si promuovono come “biocase” o a basso consumo energetico. La conseguenza è che si hanno temperature più elevate del dovuto d’estate e più fredde d’inverno, con disagio e bollette più care. 
 Persino in edifici progettati da architetti di fama internazionale e costruiti negli ultimi dieci anni da Fuksas, Krier e Gregotti, presentano risultati simili a quelli di altri edifici recenti e di firme meno prestigiose, con difetti nelle superfici perimetrali ed elementi disperdenti nelle strutture portanti

clicca qui per scaricare il dossier

 
 
 
 
 
 
 

Principles for nearly Zero-Energy Buildings

The European Union aims at drastic reductions in domestic greenhouse gas (GHG) emissions of 80% by 2050 compared to 1990 levels. The building stock is responsible for a major share of GHG emissions and should achieve even higher reductions.

The recast of the Energy Performance of Buildings Directive (EPBD) introduced, in Article 9, “nearly Zero-Energy Buildings” (nZEB) as a future requirement to be implemented from 2019 onwards for public buildings and from 2021 onwards for all new buildings. The EPBD defines a nearly zero energy building as follows: [A nearly zero energy building is a] “building that has a very high energy performance… [ ]. The nearly zero or very low amount of energy required should to a very significant extent be covered by energy from renewable sources, including renewable energy produced on-site or nearby.”

To support the EPBD implementation the Building Performance Institute Europe (BPIE) launched a study in cooperation with Ecofys and the Danish Building Research Institute (SBI) on principles for nearly Zero-Energy Buildings.

Acknowledging the variety in building culture and climate throughout the EU, the EPBD does not prescribe a uniform approach for implementing nearly Zero-Energy Buildings and neither does it describe a calculation methodology for the energy balance. To add flexibility, it requires Member States to draw up specifically designed national plans for increasing the number of nearly Zero-Energy Buildings reflecting national, regional or local conditions. The national plans will have to translate the concept of nearly Zero-Energy Buildings into practical and applicable measures and definitions to steadily increase the number of nearly Zero-Energy Buildings.

The overarching objective of this study is to contribute to a common and cross-national understanding on:

  • an ambitious, clear definition and fast uptake of nearly Zero-Energy Buildings in all EU Member States;
  • principles of sustainable, realistic nearly Zero-Energy Buildings, both new and existing;
  • possible technical solutions and their implications for national building markets, buildings and market players

click here to download the study

COMMISSIONE DELLE COMUNITÀ EUROPEE: “Le attuali conoscenze scientifiche non sono sufficienti per comprendere appieno tutte le caratteristiche e i rischi dei nanomateriali”

Se, in maniera generale, il quadro legislativo comunitario copre i nanomateriali, l’applicazione della legislazione deve essere ulteriormente perfezionata.

Tra gli elementi importanti figurano i metodi di prova e i metodi di valutazione dei rischi che fungono da base per l’applicazione della legislazione, per le decisioni amministrative e per gli obblighi a carico dei fabbricanti e dei datori di lavoro.

Le attuali conoscenze scientifiche non sono sufficienti per comprendere appieno tutte le caratteristiche e i rischi dei nanomaterialiIl comitato scientifico UE dei rischi sanitari emergenti e recentemente identificati (CSRSERI) e il comitato scientifico dei prodotti di consumo (CSPC) hanno segnalato la necessità di migliorare la base di conoscenze, soprattutto per quanto riguarda i metodi di prova e quelli di valutazione dei rischi (pericoli ed esposizione). In linea generale, fra gli Stati membri e a livello internazionale esiste un consenso sulla necessità di ulteriori ricerche. Questo è quanto viene indicato nell’allegato documento di lavoro dei servizi della Commissione. Quando non si conosce la reale portata di un rischio, ma le preoccupazioni sono tali da ritenere necessarie misure di gestione dei rischi, come è il caso attualmente per i nanomateriali, tali misure devono basarsi sul principio di precauzione. Come precisato nella comunicazione della Commissione del 2 febbraio 2000 sul principio di precauzione, il ricorso a tale principio non si traduce necessariamente nell’adozione di atti finali volti a produrre effetti giuridici. È possibile ricorrere a una vasta gamma di azioni o misure, come misure giuridicamente vincolanti, l’avvio di progetti di ricerca o raccomandazioni. Le misure adottate nel quadro del principio di precauzione devono basarsi su principi generali di gestione dei rischi; pertanto devono essere, tra l’altro, proporzionate, non discriminatorie e coerenti e fondarsi su un esame dei vantaggi e degli oneri derivanti dall’azione o dall’inazione oltre che su un esame dell’evoluzione scientifica. In tale contesto l’intervento comunitario per una gestione dei rischi che soddisfi le prescrizioni normative deve concentrarsi principalmente sulle seguenti attività.

Miglioramento della base di conoscenze

 Per sostenere l’attività normativa occorre migliorare rapidamente la base di conoscenze scientifiche. Sono in corso attività di ricerca nell’ambito dei programmi quadro di ricerca e presso il Centro comune di ricerca, come pure a livello internazionale e dei singoli Stati membri dell’UE.

Sono necessarie ricerche soprattutto negli ambiti connessi alla valutazione e alla gestione dei rischi come:

• elaborazione di dati sugli effetti tossici ed ecotossici e sviluppo di metodi di prova per produrre tali dati;

• elaborazione di dati sugli usi e le esposizioni nel corso dell’intero ciclo di vita dei nanomateriali o dei prodotti contenenti nanomateriali nonché di strategie di valutazione dell’esposizione;

• caratterizzazione dei nanomateriali, elaborazione di norme e nomenclature uniformi e di tecniche analitiche di misurazione;

• per quanto riguarda gli aspetti legati alla salute sul lavoro, efficacia di una serie di misure di gestione dei rischi, come strutture di contenimento di determinati processi, ventilazione, dispositivi di protezione individuale quali guanti e apparecchi di protezione delle vie respiratorie. Ai fini dell’elaborazione di norme e di metodi di prova occorre una stretta collaborazione internazionale per garantire che i dati scientifici possano essere confrontati a livello mondiale e che i metodi scientifici utilizzati per scopi normativi siano armonizzati.

Il gruppo di lavoro dell’OCSE sui nanomateriali di sintesi (OECD Working Party on Manufactured Nanomaterials) è diventato il principale forum per il coordinamento delle attività a livello internazionale. Sono in corso lavori anche nel quadro dell’Organizzazione internazionale di normazione (ISO). È stata avviata tutta una serie di attività volte a migliorare la base di conoscenze (cfr. l’allegato documento di lavoro dei servizi della Commissione e la comunicazione della Commissione “Nanoscienze e nanotecnologie: un piano di azione per l’Europa 2005-2009. Prima relazione sull’attuazione, 2005-2007”).

Miglioramento dell’applicazione della legislazione

I gruppi di lavoro della Commissione, le riunione delle autorità competenti e le agenzie responsabili per il coordinamento dell’applicazione delle normative dovranno valutare in maniera regolare se sia necessario adottare ulteriori provvedimenti e di quale tipo.

Tali attività si tradurranno principalmente in documenti di applicazione della legislazione esistente. Tra gli esempi possibili figurano la fissazione di limiti, l’autorizzazione di sostanze e ingredienti, la classificazione di rifiuti come pericolosi, il rafforzamento della valutazione della conformità mediante una riclassificazione, l’introduzione di restrizioni per la commercializzazione e l’impiego di sostanze e preparati chimici ecc.

Nella maggior parte dei casi le disposizioni legislative di applicazione potranno essere adottate mediante procedure di comitatologia. Sono inoltre necessari lavori a livello di documenti da utilizzare su base volontaria, come orientamenti sulla normativa, norme internazionali ed europee, pareri dei comitati scientifici ecc. Occorrerà altresì affrontare le questioni di natura etica secondo le indicazioni del gruppo europeo per l’etica delle scienze e delle nuove  tecnologie. Sarà inoltre necessario il contributo delle agenzie pertinenti, come l’Agenzia europea per i medicinali, l’Autorità europea per la sicurezza alimentare, l’Agenzia europea per le sostanze chimiche o l’Agenzia europea per la sicurezza e la salute sul lavoro (OSHA). L’allegato documento di lavoro dei servizi della Commissione indica quali misure sono già state adottate in una serie di settori. La necessità di ulteriori interventi riguarda particolarmente l’applicazione della valutazione dei rischi. I pertinenti gruppi di lavoro della Commissione devono pertanto dare un seguito ai pareri espressi dai comitati scientifici europei in merito alla valutazione dei rischi. Inoltre, gli organismi europei di normazione sono stati ufficialmente incaricati di verificare se le norme esistenti coprono in misura adeguata i rischi connessi ai nanomateriali. Occorrerà prestare un’attenzione particolare ai prodotti che non vengono sottoposti a controlli prima dell’immissione sul mercato. Dovranno essere promosse azioni congiunte fra le autorità per garantire una sorveglianza ottimale del mercato. È necessario avviare un dialogo con le parti interessate in settori specifici al fine di garantire la trasparenza sui casi in cui le prescrizioni normative vanno rispettate e sulle modalità per lo scambio delle informazioni pertinenti. A livello internazionale i rischi connessi alle nanotecnologie sono diventati una priorità per la collaborazione internazionale nel campo dei cosmetici, dei farmaci, delle sostanze chimiche, della sicurezza alimentare e dei dispositivi medici. In attesa dell’adozione di normative di applicazione e di norme o orientamenti maggiormente specifici, si continuerà a fare riferimento, caso per caso, agli attuali documenti che fungono da base per l’applicazione.

Informazione degli utilizzatori

 La legislazione comunitaria non contiene disposizioni specifiche per i nanomateriali. Senza escludere la possibilità che risulti necessario stabilire obblighi di etichettatura specifici, i nanomateriali devono tuttavia conformarsi alle disposizioni esistenti nel diritto comunitario in materia di etichettatura dei prodotti, avvertenze ai consumatori e agli utilizzatori in base alle caratteristiche dei prodotti, istruzioni per l’uso e a tutti gli altri obblighi di informazione. Rivestono inoltre pertinenza le disposizioni del regolamento REACH che prevedono obblighi di diffusione dei dati in materia di rischi per l’ambiente, la sicurezza e la salute: tali informazioni devono raggiungere gli utilizzatori industriali lungo l’intera catena di approvvigionamento mediante le schede di dati di sicurezza ed essere rese accessibili al grande pubblico su Internet. Verranno elaborate relazioni sulla sicurezza chimica per le sostanze commercializzate in quantitativi pari o superiori alle 10 tonnellate e l’Agenzia europea per le sostanze chimiche predisporrà e gestirà una base dati destinata a rendere pubblici i dati non riservati relativi alle sostanze chimiche. Si richiama inoltre l’attenzione sulle disposizioni del diritto comunitario che introducono un diritto di accesso alle informazioni in relazione ai programmi destinati principalmente ad applicare la legislazione in materia di tutela dell’ambiente. 

Occorre distinguere l’obbligo di fornire informazioni relative all’uso dei nanomateriali e delle nanotecnologie dalle affermazioni dei fabbricanti sulla presenza di particolari caratteristiche associate al loro uso. Qualora tali affermazioni non risultino giustificate si potranno invocare le disposizioni comunitarie in materia di pubblicità falsa o ingannevole

Sorveglianza di mercato e meccanismi di intervento

Una particolare attenzione verrà riservata ai vari strumenti previsti dalla legislazione comunitaria in base ai quali le autorità nazionali sono tenute a provvedere allo scambio di informazioni o ad intervenire qualora i prodotti, pur conformi alle prescrizioni regolamentari, presentino o possano presentare un rischio. Tali strumenti possono assumere la forma di clausole di salvaguardia, misure di monitoraggio della salute, controllo dei mercati dei prodotti alimentari, dei mangimi e degli antiparassitari, obiezioni formali alle norme, misure precauzionali, procedure di vigilanza, misure basate su nuovi elementi di prova o su una nuova valutazione dei dati esistenti, scambio reciproco di informazioni, sistemi di allerta o allarme rapido ecc.. Le autorità possono pertanto intervenire in qualsiasi fase qualora vengano identificati rischi specifici relativi a prodotti già presenti sul mercato che contengono nanomateriali. 

CONCLUSIONI

 In linea di massima l’attuale legislazione copre i possibili rischi per la salute, la sicurezza e l’ambiente connessi ai nanomateriali. La protezione della salute, della sicurezza e dell’ambiente deve essere rafforzata soprattutto migliorando l’applicazione della legislazione esistente. La Commissione e le agenzie dell’Unione Europea procederanno quindi in primo luogo a un riesame degli attuali documenti alla base di tale applicazione, quali disposizioni legislative di applicazione, norme e orientamenti tecnici dal punto di vista della loro applicabilità e adeguatezza in relazione ai nanomateriali. È necessario migliorare le conoscenze su questioni di fondamentale importanza quali la caratterizzazione dei nanomateriali, i loro pericoli, l’esposizione e la valutazione della gestione dei rischi. Poiché le conoscenze si dimostrano il fattore cruciale ai fini dell’applicazione della legislazione e, in definitiva, della sua elaborazione, sono state intraprese in via prioritaria azioni mirate in una serie di settori e a diversi livelli, soprattutto nel campo della ricerca e dello sviluppo, nell’ambito dei programmi quadro 6 e 7 e presso il Centro comune di ricerca della Commissione europea. Le attività sono coordinate con i partner internazionali e le parti interessate in seno ai forum pertinenti come l’OCSE e l’ISO. I gruppi di lavoro della Commissione incaricati di coordinare l’applicazione della legislazione stanno esaminando su base continua se sia necessario modificare la normativa su aspetti specifici, tenendo conto della produzione permanente di informazioni a seguito dell’identificazione di lacune conoscitive. Essi prenderanno in considerazione i lavori svolti in materia a livello nazionale e internazionale. Le autorità e le agenzie responsabili per l’applicazione della legislazione dovranno continuare a sorvegliare con attenzione il mercato e avvalersi dei meccanismi comunitari di intervento sul mercato qualora prodotti già in commercio presentino rischi.  La Commissione intende riferire sui progressi compiuti in tali campi tre anni dopo la presentazione della presente comunicazione.

LEGGI IL TESTO COMPLETO